Filtern
Dokumenttyp
- Vortrag (6)
- Beitrag zu einem Tagungsband (2)
- Posterpräsentation (1)
Referierte Publikation
- nein (9)
Schlagworte
- Blast injury (9)
- Experimental setup (6)
- Shock wave generator (6)
- Pressure wave (5)
- Primäre Explosionswirkung (4)
- Druckwelle (3)
- Low Level Blast (1)
- Primäre Explosionswirkug (1)
- Stoßwellengenerator (1)
- Versuchsaufbau (1)
Organisationseinheit der BAM
Eingeladener Vortrag
- nein (6)
In the field of explosive reactions, there is a type of explosive effect that lacks a sufficient database and reproducible experiments regarding biomechanics. It concerns the primary explosive effect. It is defined as pure shock wave of the explosion. The physical behavior of the shock wave when interacting with different types of tissue and, in particular, the subsequent transitions of the shock wave, have barely been investigated. The transition of the shock wave into other materials is the focus of the research Therefore, the aim of the investigations is the development of a multidisciplinary method to investigate shock wave behavior in various generic tissue simulants under the most reproducible conditions possible with realistic loads in an experimental test series with short set-up times. An autoclave is used to generate the pressure waves. A simplified torso model consisting of ballistic gelatin is used as a simulant. In this paper, the influence of protective equipment on the pressure load in the tissue simulant is investigated. For this purpose, consecutive test setups are used. First, the behavior of ballistic gelatin as a tissue simulant is investigated. Then, the simplified torso model is covered with typical combat clothing consisting of four layers. Afterwards a currently used UHMWPE ballistic protective plate is placed in front of the simplified torso model. Finally, the combat clothing and the protective plate are examined in combination. Three cast-in pressure sensors are used as measuring devices, as well as an acceleration sensor attached to the protective plate. The experiments show that the maximum overpressure in a model protected by combat clothing and the protective plate can be reduced by 95%. However, the propagation speed of the shock wave within the simplified torso model increases from 1535.5 m/s to 2204.5 m/s. This shows that even protective equipment, which is not primarily intended to protect against blast, offers a significant reduction in the pressure load in the protected area. On the one hand it is caused by the media transition from air to PE and the resulting higher reflection of the acceleration of the transmitted wave within the simulant. On the other hand, it is also reduced due to the damping and dispersion caused by the clothing layers.
In the field of explosive reactions, there is a type of explosive effect that lacks a sufficient database and reproducible experiments regarding biomechanics. It concerns the primary explosive effect. It is defined as pure shock wave of the explosion. The physical behavior of the shock wave when interacting with different types of tissue and, in particular, the subsequent transitions of the shock wave, have barely been investigated. The transition of the shock wave into other materials is the focus of the research Therefore, the aim of the investigations is the development of a multidisciplinary method to investigate shock wave behavior in various generic tissue simulants under the most reproducible conditions possible with realistic loads in an experimental test series with short set-up times. An autoclave is used to generate the pressure waves. A simplified torso model consisting of ballistic gelatin is used as a simulant.
In this paper, the influence of protective equipment on the pressure load in the tissue simulant is investigated. For this purpose, consecutive test setups are used. First, the behavior of ballistic gelatin as a tissue simulant is investigated. Then, the simplified torso model is covered with typical combat clothing consisting of four layers.
Afterwards a currently used UHMWPE ballistic protective plate is placed in front of the simplified torso model.
Finally, the combat clothing and the protective plate are examined in combination. Three cast-in pressure sensors are used as measuring devices, as well as an acceleration sensor attached to the protective plate.
The experiments show that the maximum overpressure in a model rotected by combat clothing and the protective plate can be reduced by 95%. However, the propagation speed of the shock wave within the simplified torso model increases from 1535.5 m/s to 2204.5 m/s. This shows that even protective equipment, which is not primarily intended to protect against blast, offers a significant reduction in the pressure load in the protected area. On the one hand it is caused by the media transition from air to PE and the resulting higher reflection of the acceleration of the transmitted wave within the simulant. On the other hand, it is also reduced due to the damping and dispersion caused by the clothing layers.
Following directly from the information presented at IFBIC 2023 on the research project 'Investigation of intracorporeal shock wave propagation using a simplified torso model and a shock wave generator', the latest results are presented below [1]. In order to contribute to the research efforts on the primary explosion effects, the aim of the investigation is the development of a multidisciplinary method to investigate shock wave behavior in various generic tissue simulants under the most reproducible conditions possible with realistic loads in an experimental series with short set-up times.
To achieve this, an autoclave with a volume of 0.065 m3 is used to generate reproducible pressure waves (Fig. 1). The autoclave will be referred to as Shockwave Generator (SWG). The pressure wave is produced by the detonation of a stoichiometric mixture of acetylene and oxygen under atmospheric conditions. The SWG-outlet is sealed by a rupture disc, which can be adjusted in thickness to vary the initial pressure. Additionally, modifying the composition of the acetylene-oxygen mixture can result in different load cases. The SWG requires approximately 30 minutes of set-up time between trials. The SWG was adjusted to match the characteristics of a real and typical explosive through free-field measurements. The experiments demonstrated that the pressure wave propagates in a hemispherical shape and has sufficient reproducibility.
To represent soft tissue, a basic model made of homogeneous ballistic gelatin is used in a geometrically simplified torso model (STM) (Fig. 2). The STM was enlarged to outer dimensions of 400 x 250 x 240 mm. Viscoelastic behavior of the ballistic gelatin can be assumed due to the collagen structure [2]. The density of the ballistic gelatin, and therefore the sound velocity, can be adjusted by changing the mixing ratio. Simplified simulants, such as hollow and solid material (bone simulant), were embedded in the STM. Additionally, the STM has been tested as a carrier material for biological substances, such as indicator species. The next step is to test the STM as a carrier material for larger organic tissue structures such as lungs or kidneys. The organic tissue samples will undergo histological examination to analyze their structural changes afterwards. The STM is equipped with embedded piezoelectric pressure sensors, an accelerometer and a temperature sensor. Visual documentation is captured using a high-speed camera. This measurement setup allows for the tracking of the coupled pressure wave and its behavior within the model and at the media transitions. Pressure values can be recorded after certain media changes, such as from soft tissue to a solid material (Figure 3).
The following is a review of the optimizations made to the entire experimental setup. The reproducibility of the SWG was increased. This was achieved by extending the evacuation process to the entire feed system of the SWG. Nitrogen residues in the SWG system can thus be avoided. As a result, the double peaks that occur at the first maximum can be avoided, as combustion runs more evenly without the nitrogen residues. In addition, partially varying peak overpressures can be avoided, as the acytelene-oxygen mixture is not too lean due to the elimination of the nitrogen residues. The workflow has been streamlined, resulting in an average set-up time of 25 minutes for the SWG. In the case of the STM, the manufacturing process in particular was optimized by examining and defining the manufacturing process based on scientific publications, which increases the reproducibility of the STM base bodies. As already mentioned in the previous paragraph, the STM was equipped with various additives in order to investigate the transition behavior of the pressure wave.
The following trail serves as an example: A comparison is made between the STM in the basic structure (Fig. 2 l.s.) and with an embedded solid material (bone plate) (Fig. 3 l.s.). An external overpressure of 100 kPa is generated by the SWG at a distance of 1 m, where the STM is placed. For the basic STM structure, the sensor distance is consistently 100 mm. The internal overpressure is visible in Fig. 2 r.s.. A typical ideal pressure curve can be seen. The characteristic points are easily distinguishable from the reflection peaks. In the STM with an embedded solid material, the sensor distance remains consistently at 66.6 mm
Blast injuries are among the most common injuries in military operations. Also, in civilian environments, more explosive threats are expected in the future due to emerging conflicts and threats. While the effect of fragments, which is classified as secondary blast injury, could be minimized by police and military personnel’s modern ballistic body protection systems, the effects of shock wave propagation in the body as part of the primary explosion trauma still remain a serious threat needing further research.
The detonation-physical processes of highly dynamic pressure changes within the human body, the reflection-related amplification of shock waves at organ-dermis interfaces, and the consequences of injury mechanisms have become more prominent in international research. Various approaches have been used to investigate these aspects. Animal experiments on free field test sites or shock tube setups combined with a subsequent biological evaluation and numerical simulations provided promising results and allowed the discussion of different biomechanical aspects. However, due to poor reproducibility and a lack of short-term dynamic material properties, most research approaches have significant limitations. Laboratory test setups do not represent real-scale high explosive detonation parameters with regards to pressure characteristics, impulse duration and blockage problems. Measured values are interpreted with partly outdated, selective and not validated limit values for overpressures from field tests with animals. This is due to the lack of a validated and comprehensive data set covering a variation of the crucial parameter. Injury mechanisms and their effects have not yet been sufficiently elucidated for the torso and extremities.
In order to contribute to the research efforts on the primary explosion effects, the German Federal Armed Forces established an interdisciplinary military medical research project in cooperation of the Bundeswehr Hospital Berlin and the German Federal Institute for Materials Research and Testing (BAM). The aim of the planned investigation is the development of a multidisciplinary method to investigate shock wave behavior in various generic tissue simulants under the most reproducible conditions possible with realistic loads in an experimental test series with short set-up times.
Explosionsverletzungen gehören zu den häufigsten Verletzungen bei militärischen Einsätzen. Während die Auswirkungen von Splittern, die als sekundäre Explosionsverletzungen eingestuft werden, durch die modernen ballistischen Körperschutzsysteme der Polizei und des Militärs minimiert werden konnten, stellen die Auswirkungen der Stoßwellenausbreitung im Körper als Teil des primären Explosionstraumas nach wie vor eine ernsthafte Bedrohung dar. Zusätzlich zu einzelnen einsatzbedingten Lastfällen liegt ein wissenschaftlicher Fokus auf besonders exponiertem Personal, z.B. aus den Einsatzbereichen „Taktische Zugangstechnik“, „Präzisionsschützenwesen“ oder Steilfeuerwaffen (Mörser). Repetitive mild traumatic brain injury (mTBI) können gesundheitliche Langzeitschädigungen wie und chronic traumatic encephalopathy (CTE) erzeugen.
Um einen Beitrag zur Erforschung der primären Explosionswirkungen zu leisten, hat die Bundeswehr in Zusammenarbeit mit dem Bundeswehrkrankenhaus Berlin und der Bundesanstalt für Materialforschung und -prüfung (BAM) ein interdisziplinäres wehrmedizinisches Sonderforschungsvorhaben eingerichtet. Ziel der geplanten Untersuchung ist die Entwicklung einer multidisziplinären Methode zur Analyse des Stoßwellenverhaltens in verschiedenen generischen Gewebesimulanzien, sowie Schutzmaterialien unter möglichst realitätsnahen und reproduzierbaren Bedingungen.
Für die Erzeugung reproduzierbarer Stoßwellen wurde ein Autoklav
(Druckbehälter) entwickelt, mit dem durch die detonative Umsetzung eines Acetylen-Sauerstoff-Gemisches gut reproduzierbare Druckwellen unter Freifeldbedingungen erzeugt werden können. Vorteile dieser Methode sind unter anderem die kurzen Rüstzeiten zwischen Versuchsdurchgängen, die Minimierung störender Einflüsse im Vergleich zu Stoßwellenrohren und die geringeren Sicherheitsanforderungen im Vergleich zur Anwendung von konventionellen Sprengstoffen. Das generische Torso-Modell besteht in seiner einfachsten Form aus einem mit Druck- und Beschleunigungssensoren instrumentierten Gelatineblock, welcher eine Simulanz für organisches Gewebe darstellt. Zur Untersuchung des Stoßwellenverhaltens wurden verschiedene Medien, wie Hohlkörper, Festkörper und Gewebesimulanzien differenter Dichte in das generische Torso-Modell eingebracht. Einen besonderer Untersuchungsschwerpunkt bildeten die Grenzbereiche zwischen den unterschiedlichen Medien. Des Weiteren wurde analysiert, wie sich verschiedene Schutzmaterialien auf das Stoßwellenverhalten auswirken und mit welchen veränderten Eigenschaften die Stoßwelle anschließend in die Gewebesimulanz einkoppelt.
Experimental Setup for the Reproducible Generation of Pressure Waves in Free Field Conditions
(2023)
The injuries caused by the primary blast are still poorly understood, especially in the torso region. To generate sufficiently large data sets, shock tubes are often used. However, these have some limitations, such as blockage, use of the exit jet, widening cross-sections, and scaling problems with respect to compressive strength and test objects. Therefore, it is appropriate to conduct experiments under free-field conditions, but tests with real explosives are often associated with long preparation and setup times as well as high safety requirements.
Therefore, this paper presents an experimental setup for the reproducible generation of blast waves under free-field conditions. This experimental setup aims to provide a test environment for a sufficiently large specimen to investigate the behaviour of the shock wave within the specimen, especially at the media interfaces. As an example of application, the influence of the primary explosive effect on protective equipment or on tissue simulants for the investigation of blast injuries can be mentioned. An autoclave is used as a shock wave generator. It has a volume of 0.065 m3 and is filled with a stoichiometric acetylene-oxygen gas mixture. The setup and turnaround time is approximately 30 minutes. The following factors have been selected as target variables for the optimization of the shock wave generator: reproducibility of the pressure wave, use-case-relevant positive phase duration and peak overpressure, a pressure curve characteristic corresponding to that of a military explosive under undisturbed free field conditions, and short setup times of the experimental setup. For this purpose, the experimental setup is presented in this paper. Several series of measurements are presented, showing the characteristics of the generated pressure wave. For the generated pressure wave, the classical pressure curve characteristics can be clearly recognized. A peak pressure of 92 kPa is reached at a distance of 1 m from the opening, and the first positive pressure phase lasts 1.17 ms. Furthermore, the pressure wave propagates in a hemispherical shape. The typical characteristics of the blast wave generated by the SWG have been demonstrated using the military explosive PETN. It is shown that the actual load case corresponds to about 70 g of PETN.
Experimental Setup for the Reproducible Generation of Pressure Waves in Free Field Conditions
(2023)
The injuries caused by the primary blast are still poorly understood, especially in the torso region. To generate sufficiently large data sets, shock tubes are often used. However, these have some limitations, such as blockage, use of the exit jet, widening cross-sections, and scaling problems with respect to compressive strength and test objects. Therefore, it is appropriate to conduct experiments under free-field conditions, but tests with real explosives are often associated with long preparation and setup times as well as high safety requirements.
Therefore, this paper presents an experimental setup for the reproducible generation of blast waves under free-field conditions. This experimental setup aims to provide a test environment for a sufficiently large specimen to investigate the behaviour of the shock wave within the specimen, especially at the media interfaces. As an example of application, the influence of the primary explosive effect on protective equipment or on tissue simulants for the investigation of blast injuries can be mentioned. An autoclave is used as a shock wave generator. It has a volume of 0.065 m3 and is filled with a stoichiometric acetylene-oxygen gas mixture. The setup and turnaround time is approximately 30 minutes. The following factors have been selected as target variables for the optimization of the shock wave generator: reproducibility of the pressure wave, use-case-relevant positive phase duration and peak overpressure, a pressure curve characteristic corresponding to that of a military explosive under undisturbed free field conditions, and short setup times of the experimental setup. For this purpose, the experimental setup is presented in this paper. Several series of measurements are presented, showing the characteristics of the generated pressure wave. For the generated pressure wave, the classical pressure curve characteristics can be clearly recognized. A peak pressure of 92 kPa is reached at a distance of 1 m from the opening, and the first positive pressure phase lasts 1.17 ms. Furthermore, the pressure wave propagates in a hemispherical shape. The typical characteristics of the blast wave generated by the SWG have been demonstrated using the military explosive PETN. It is shown that the actual load case corresponds to about 70 g of PETN.