Filtern
Erscheinungsjahr
Dokumenttyp
- Zeitschriftenartikel (159)
- Vortrag (42)
- Posterpräsentation (8)
- Beitrag zu einem Tagungsband (4)
- Preprint (2)
- Buchkapitel (1)
- Corrigendum (1)
- Forschungsbericht (1)
- Forschungsdatensatz (1)
Schlagworte
- SAXS (78)
- Small-angle X-ray scattering (49)
- Nanoparticle (31)
- Nanoparticles (27)
- Silver nanoparticles (16)
- Nanotechnology (15)
- Polymer (11)
- Silver (9)
- Small-angle x-ray scattering (9)
- XANES (6)
Organisationseinheit der BAM
- 6 Materialchemie (52)
- 6.5 Synthese und Streuverfahren nanostrukturierter Materialien (51)
- 6.3 Strukturanalytik (6)
- 5 Werkstofftechnik (3)
- 1 Analytische Chemie; Referenzmaterialien (2)
- 1.2 Biophotonik (2)
- 5.1 Mikrostruktur Design und Degradation (2)
- 6.1 Oberflächen- und Dünnschichtanalyse (2)
- 6.6 Physik und chemische Analytik der Polymere (2)
- 1.0 Abteilungsleitung und andere (1)
Paper des Monats
- ja (2)
Nanocomposites based on poly(ʟ-lactide) (PLA) and organically modified MgAl Layered Double Hydroxides (MgAl-LDH) were prepared by melt blending and investigated by a combination of Differential Scanning Calorimetry (DSC), Small- and Wide-Angle X-ray Scattering (SAXS, WAXS), and dielectric spectroscopy (BDS). Scanning microfocus SAXS investigations show that the MgAl-LDH is homogeneously distributed in the matrix as stacks of 6 layers and/or partly exfoliated layers. DSC and WAXS show that the degree of crystallinity decreases linearly with the content of LDH. The extrapolation of the dependencies (DSC and WAXS) to zero estimates a limiting concentration of LDH CCri of ca. 21 wt% where the crystallization of PLA is completely suppressed by the nanofiller. The dielectric behavior of neat PLA show two relaxation regions, a β-relaxation at low temperatures related to localized fluctuations and the α-relaxation at higher temperatures due to the dynamic glass transition. The dielectric spectra of the nanocomposites show several additional relaxation processes compared to neat PLA which are discussed in detail. For the nanocomposites around 260 K (ƒ = 1 kHz) an additional process is observed which intensity increases with increasing concentration of LDH. This process is mainly attributed to the exchanged dodecylbenzene sulfonate (SDBS) molecules which are adsorbed at the LDH layers and form a mixed phase with the polymer close to the layers and stacks. An analysis of this process provides information about the molecular dynamics in the interfacial region between the LDH layers and the PLA matrix which reveal glassy dynamics in this region. In the temperature range around 310 K (ƒ = 1 kHz) a further process is observed. Its relaxation rate has an unusual saddle-like temperature dependence. It was assigned to rotational fluctuations of water molecules in a nanoporous environment provided by the LDH filler. Above the glass transition temperature a further process is observed at temperatures above. It is related to Maxwell/Wagner/Sillars polarization due to the blocking of charges at the nanofiller.
Two methods were employed to prepare hyperbranched polyamine ester (HPAE)/kaolinite (Ka) nanocomposites resulting in different morphologies. In the case of the in situ polymerization, diethanolamine is inserted as monomer between the Ka layers and polymerized with methyl acrylate to prepare HPAE/Ka–DEA nanocomposites. For the ex situ method, Ka is modified with dodecylamine and solution-blended with HPAE. The former method leads to an intercalated morphology where the latter approach results in an exfoliated structure, as proofed by SAXS and TEM. A complementary combination of methods like differential scanning calorimetry (DSC), broadband dielectric relaxation (BDS), and specific heat spectroscopy (SHS) was used to investigate both kinds of nanocomposites in detail. Above Tg, the dielectric spectra are dominated by the conductivity contribution while the segmental dynamics is retrieved by SHS. A comparison of the temperature dependencies reveals a decoupling of segmental dynamics and conductivity, which becomes weaker with decreasing fragility.
Nanocomposites based on poly(L-lactide) (PLA) and organically modified Ni/Al layered double hydroxides (NiAl/LDHs) are prepared by melt blending and investigated by a combination of size exclusion chromatography, differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering, and broadband dielectric spectroscopy. A detailed comparison to the behavior of the corresponding MgAl/LDH–PLA nanocomposites is made. SAXS investigations show that the morphology of the NiAl/LDH–PLA nanocomposites is more intercalated compared to the MgAl/LDH based PLA nanocomposite, which is more exfoliated. The DSC investigation gives a different dependence of the degree of crystallization on the concentration of LDH for NiAl/LDH–PLA than for MgAl/LDH–PLA nanocomposite system. These differences are discussed taking the differences of the morphologies of both systems into account. Broadband dielectric spectroscopy reveals information about the molecular dynamics where essential differences are observed for all relaxation processes taking place in both systems which were related to the different morphologies.
Organically modified ZnAl Layered Double Hydroxides (ZnAl-LDH) was synthesized and melt blended with polyethylene to obtain nanocomposites. The resulting morphology was investigated by a combination of Differential Scanning Calorimetry (DSC), Small and Wide-angle X-ray scattering (SAXS and WAXS) and dielectric relaxation spectroscopy (DRS). The arrangement (intercalation) of polyethylene chains between LDH stacks was investigated employing SAXS. The homogeneity of the nanocomposites and average number of stack size (4–6 layers) were determined using scanning microfocus SAXS (BESSY II). DSC and WAXS results show that the degree of crystallinity decreases linearly with the increasing content of LDH. The extrapolation of this dependence to zero estimates a limiting concentration of ca. 45% LDH where the crystallization of PE is completely suppressed by the nanofiller. The dielectric spectra of the nanocomposites show several relaxation processes which are discussed in detail. The intensity of the dynamic glass transition (β-relaxation) increases with the concentration of LDH. This is attributed to the increasing concentration of the exchanged anion sodium dodecylbenzene sulfonate (SDBS) which is adsorbed at the LDH layers. Therefore, a detailed analysis of the β-relaxation provides information about the structure and the molecular dynamics in the interfacial region between the LDH layers and the polyethylene matrix which is otherwise dielectrically invisible (low dipole moment).
Nanocomposites based on polypropylene (PP) and organically modified ZnAl layered double hydroxides (ZnAl-LDH) were prepared by melt blending and investigated by a combination of differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS and WAXS), and dielectric relaxation spectroscopy (DRS). An average number of stack size of LDH layers is calculated by analyzing the SAXS data which is close to that of pure organically modified ZnAl-LDH. Scanning microfocus SAXS investigations show that the ZnAl-LDH is homogeneously distributed in the PP matrix as stacks of 4–5 layers with an intercalated morphology. DSC and WAXS results show that the degree of crystallinity decreases linearly with the increasing content of LDH. The extrapolation of this dependence to zero estimates a limiting concentration of ca. 40% LDH where the crystallization of PP is completely suppressed by the nanofiller. The dielectric spectra of the nanocomposites show several relaxation processes which are discussed in detail. The intensity of the dynamic glass transition (β-relaxation) increases with the concentration of LDH. This is attributed to the increasing concentration of the exchanged anion dodecylbenzenesulfonate (SDBS) which is adsorbed at the LDH layers. Therefore, a detailed analysis of the β-relaxation provides information about the structure and the molecular dynamics in the interfacial region between the LDH layers and the polypropylene matrix which is otherwise dielectrically invisible (low dipole moment). As a main result, it is found that the glass transition temperature in this interfacial region is by 30 K lower than that of pure polypropylene. This is accompanied by a drastic change of the fragility parameter deduced from the relaxation map.
Hyperbranched poly(amidoamine)/kaolinite nanocomposites: Structure and charge carrier dynamics
(2017)
An ex-situ approach was applied to prepare nanocomposites from hyperbranched poly(amidoamine) and modified kaolinite (Ka-DCA). The structure of the polymer and the corresponding nanocomposites was investigated by FTIR, DSC, SAXS and TEM. SAXS might suggest a partly exfoliated structure of the nanocomposites, which was supported by TEM. The molecular dynamics was studied by means of broadband dielectric spectroscopy (BDS). The dielectric spectra are dominated by a conductivity
contribution at higher temperatures for all samples investigated. The obtained results further indicated that DC conductivity is increased by 4 orders of magnitude with increasing concentration of Ka-DCA nanofiller. Further, a significant separation between the conductivity relaxation time and that of segmental dynamics was observed. The decoupling phenomenon and the conductivity mechanism were discussed in detail. This study provides insights about the influence of the nanofiller on the structure and the conductivity contribution of nanocomposites of hyperbranched polymers including the decoupling phenomenon and fragility.
AbstractWe report on gold clusters with around 62 gold atoms and a diameter of 1.15±0.10 nm. Dispersions of the clusters are long‐term stable for two years at ambient conditions. The synthesis was performed by mixing tetrachloroauric acid (HAuCl4 ⋅ 3 H2O) with the ionic liquid 1‐ethyl‐3‐methylimidazolium dicyanamide ([Emim][DCA]) at temperatures of 20 to 80 °C. Characterization was performed with small‐angle X‐ray scattering (SAXS), UV‐Vis spectroscopy, and MALDI‐TOF mass spectrometry. A three‐stage model is proposed for the formation of the clusters, in which cluster growth from gold nuclei takes place according to the Lifshitz‐Slyozov‐Wagner (LSW) model followed by oriented attachment to form colloidal stable clusters.
A combination of molecular modeling and X-ray scattering was used to elucidate the structure of the metallosupramolecular polyelectrolyte-amphiphile complex (PAC) self-assembled from FeII, 1,4-bis(2,2:6,2-terpyridin-4-yl)benzene, and dihexadecyl phosphate (DHP). An approximate structure of the semi-ordered material was derived from the analysis of the X-ray scattering data. The experimental data provided sufficient input for obtaining a useful starting configuration for molecular modeling. Various models of the supramolecular architecture are presented and discussed in terms of their total energies and scattering patterns. In an iterative approach each level of the structural hierarchy was refined until satisfactory agreement of calculated and experimental scattering patterns was reached. The remarkable sensitivity of the simulated scattering curves to even the smallest structural changes at all length scales restricts the arbitrariness of modeling. The final model of PAC consists of flat lamellae of alternating strata of interdigitated DHP monolayers and nematically ordered polyelectrolyte chains.