Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (45)
- Zeitschriftenartikel (43)
- Beitrag zu einem Tagungsband (23)
- Beitrag zu einem Sammelband (4)
- Forschungsbericht (4)
- Buchkapitel (2)
- Dissertation (1)
- Posterpräsentation (1)
- Forschungsdatensatz (1)
Sprache
- Englisch (68)
- Deutsch (54)
- Mehrsprachig (1)
- Serbisch (1)
Schlagworte
- Grain refinement (7)
- Neural networks (7)
- Welding simulation (7)
- Aluminium (6)
- Digitalisierung (6)
- Welding (6)
- Ökobilanzierung (6)
- Gründungsstrukturen (5)
- Laser beam welding (5)
- Leichtbau (5)
Organisationseinheit der BAM
- 9 Komponentensicherheit (50)
- 9.3 Schweißtechnische Fertigungsverfahren (50)
- 7 Bauwerkssicherheit (7)
- 7.2 Ingenieurbau (4)
- 8 Zerstörungsfreie Prüfung (3)
- 5 Werkstofftechnik (2)
- 5.2 Metallische Hochtemperaturwerkstoffe (2)
- 7.7 Modellierung und Simulation (2)
- 8.5 Röntgenbildgebung (2)
- 5.1 Mikrostruktur Design und Degradation (1)
Eingeladener Vortrag
- nein (45)
The present thesis provides a contribution to the solution of the inverse heat conduction problem in welding simulation. The solution strategy is governed by the need that the phenomenological simulation model utilised for the direct solution has to provide calculation results within short computational time. This is a fundamental criterion in order to apply optimisation algorithms for the detection of optimal model parameter sets. The direct simulation model focuses on the application of functional-analytical methods for solving the corresponding partial differential equation of heat conduction. In particular, volume heat sources with a bounding of the domain of action are applied. Besides the known normal and exponential distribution, the models are extended by the introduction of parabolically distributed heat sources. Furthermore, the movement on finite specimens under consideration of curved trajectories has been introduced and solved analytically. The calibration of heat source models against experimental reference data involves the simultaneous adaptation of model parameters. Here, the global parameter space is searched in a randomised manner. However, an optimisation pre-processing is needed to get information about the sensitivity of the weld characteristics like weld pool dimension or objective function due to a change of the model parameters. Because of their low computational cost functional-analytical models are well suited to allow extensive sensitivity studies which is demonstrated in this thesis. For real welding experiments the applicability of the simulation framework to reconstruct the temperature field is shown. In addition, computational experiments are performed that allow to evaluate which experimental reference data is needed to represent the temperature field uniquely. Moreover, the influence of the reference data like fusion line in the cross section or temperature measurements are examined concerning the response behaviour of the objective function and the uniqueness of the optimisation problem. The efficient solution of the inverse problem requires two aspects, namely fast solutions of the direct problem but also a reasonable number of degrees of freedom of the optimization problem. Hence, a method was developed that allows the direct derivation of the energy distribution by means of the fusion line in the cross section, which allows reducing the dimension of the optimisation problem significantly. All conclusions regarding the sensitivity studies and optimisation behaviour are also valid for numerical models for which reason the investigations can be treated as generic.
The objective of this paper is to demonstrate a new simulation technique which allows fast and automatic generation of temperature fields as input for subsequent thermomechanical welding simulation. The basic idea is to decompose the process model into an empirical part based on neural networks and a phenomenological part that describes the physical phenomena. The strength of this composite modelling approach is the automatic calibration of mathematical models against experimental data without the need for manual interference by an experienced user. As an example for typical applications in laser beam and GMA-laser hybrid welding, it is shown that even 3D heat conduction models of a low complexity can approximate measured temperature fields with a sufficient accuracy. In general, any derivation of model fitting parameters from the real process adds uncertainties to the simulation independent of the complexity of the underlying phenomenological model. The modelling technique presented hybridises empirical and phenomenological models. It reduces the model uncertainties by exploiting additional information which keeps normally hidden in the data measured when the model calibration is performed against few experimental data sets. In contrast, here the optimal model parameter set corresponding to a given process parameter is computed by means of an empirical submodel based on relatively large set of experimental data. The approach allows making a contribution to an efficient compensation of modelling inaccuracies and lack of knowledge about thermophysical material properties or boundary conditions. Two illustrating examples are provided.