Filtern
Dokumenttyp
Sprache
- Englisch (2)
Referierte Publikation
- nein (2)
Schlagworte
- Copper (2)
- Corrosion (2)
- Geothermal energy (2)
- Steel (2)
- Lead (1)
Organisationseinheit der BAM
Geothermal brines often contain high amounts of lead and copper ions that can precipitate as native Cu and Pb as consequence of galvanic corrosion when brines react with carbon steel materials. This contribution evaluates which materials could overcome the problem of galvanic corrosion at geothermal environment.
The behavior of these materials in water containing high chloride concentration (> 100 g/L NaCl) as well as various amounts of dissolved bCl2 and/or CuCl2 was characterized by electrochemical and exposure measurements.
Both methods reveal carbon steel suffers corrosion susceptibility, accompanied by Cu◦ and/or Pb◦ precipitation on the surface. Electrochemical measurements on stainless steels result in significant difference in corrosion and repassivation potentials (Ecorr = -189 mV, Erep = 70 mV), indicating a good corrosion resistance.
By exposure and electrochemical tests in the laboratory the Cu-effect on corrosion behavior of carbon steel, high-alloyed steels and Ti-alloy can be assessed.
Critical materials specific properties were determined by static exposure and electrochemical tests in an artificial geothermal water with high salinity and low pH, containing Cu. Conclusions were drawn using characteristic potential values.
It could be shown that significant Cu-deposition and -precipitation only occurred in combination with carbon steel. High-alloyed materials (S31603, S31653, S31700, S31703, S31803 and N08904) prevent the disturbing Cu-agglomeration. Therefore, they are suitable to be chosen for future design of the piping system, either in massive or in cladded form, if formation of crevices with non-metallic materials can be excluded.
From the interactions and pitting corrosion point of view, R50400 seems to be most favorable.