Filtern
Schlagworte
- Monoclonal antibodies (2)
- 3R concept (1)
- Aflatoxin (1)
- Animal welfare (1)
- CLSM (1)
- Coproantibodies (1)
- Digoxigenin (1)
- ELISA (1)
- Estradiol (1)
- Estrone (1)
Organisationseinheit der BAM
A non-invasive method to monitor the humoral immune response in mice after immunization is described. From fecal pellets of an individual mouse, a sufficient amount of active immunoglobulins or their fragments can be extracted to perform a regular examination of the status of the immune response by immunoassay. Hapten-specific antibodies from the feces of mice from three immunization trials showed very similar characteristics to those obtained from serum at a given date. Therefore, it can be suspected that some serum IgG enters the intestinal lumen and ends up in the feces, where they appear to be considerably stable. Hapten-specific IgAs were not found in the feces. Being able to analyze antibody titers in feces could be an interesting animal welfare refinement to standard practice that does not entail repeated blood sampling.
A novel method that optimizes the screening for antibody-secreting hapten-specific hybridoma cells by using flow cytometry is described. Cell clones specific for five different haptens were analyzed. We selectively double stained and analyzed fixed hybridoma cells with fluorophore-labeled haptens to demonstrate the target-selectivity, and with a fluorophore-labeled anti-mouse IgG antibody to characterize the level of surface expression of membrane-bound IgGs. ELISA measurements with the supernatants of the individual hybridoma clones revealed that antibodies from those cells, which showed the highest fluorescence intensities in the flow cytometric analysis, also displayed the highest affinities for the target antigens. The fluorescence intensity of antibody-producing cells corresponded well with the produced antibodies' affinities toward their respective antigens. Immunohistochemical staining verified the successful double labeling of the cells. Our method makes it possible to perform a high-throughput screening for hybridoma cells, which have both an adequate IgG production rate and a high target affinity.
The conventional hybridoma screening and subcloning process is generally considered to be one of the most critical steps in hapten-specific antibody production. It is time-consuming, monoclonality is not guaranteed, and the number of clones that can be screened is limited. Our approach employs a novel hapten-specific labeling technique of hybridoma cells. This allows for fluorescence-activated cell sorting (FACS) and single-cell deposition and thereby eliminates the above-mentioned problems. A two-step staining approach is used to detect antigen specificity and antibody expression: in order to detect antigen specificity, hybridoma cells are incubated with a hapten−horseradish peroxidase conjugate (hapten−HRP), which is subsequently incubated with a fluorophore-labeled polyclonal anti-peroxidase antibody (anti-HRP−Alexa Fluor 488). To characterize the expression of membrane-bound immunoglobulin G (IgG), a fluorophore-labeled anti-mouse IgG antibody (anti-IgG−Alexa Fluor 647) is used. Hundreds of labeled hybridoma cells producing monoclonal antibodies (mAbs) specific for a hapten were rapidly isolated and deposited from a fusion mixture as single-cell clones via FACS. Enzyme-linked immunosorbent assay (ELISA) measurements of the supernatants of the sorted hybridoma clones revealed that all hapten-specific hybridoma clones secrete antibodies against the target. There are significant improvements using this high-throughput technique for the generation of mAbs including increased yield of antibody-producing hybridoma clones, ensured monoclonality of sorted cells, and reduced development times.