• search hit 3 of 7
Back to Result List

Reaction Mechanism Development for Methane Steam Reforming on a Ni/Al2O3 Catalyst

  • In this work, a reliable kinetic reaction mechanism was revised to accurately reproduce the detailed reaction paths of steam reforming of methane over a Ni/Al2O3 catalyst. A steady-state fixed-bed reactor experiment and a 1D reactor catalyst model were utilized for this task. The distinctive feature of this experiment is the possibility to measure the axially resolved temperature profile of the catalyst bed, which makes the reaction kinetics inside the reactor visible. This allows for understanding the actual influence of the reaction kinetics on the system; while pure gas concentration measurements at the catalytic reactor outlet show near-equilibrium conditions, the inhere presented temperature profile shows that it is insufficient to base a reaction mechanism development on close equilibrium data. The new experimental data allow for achieving much higher quality in the modeling efforts. Additionally, by carefully controlling the available active surface via dilution in the experiment, it was possible to slow down the catalystIn this work, a reliable kinetic reaction mechanism was revised to accurately reproduce the detailed reaction paths of steam reforming of methane over a Ni/Al2O3 catalyst. A steady-state fixed-bed reactor experiment and a 1D reactor catalyst model were utilized for this task. The distinctive feature of this experiment is the possibility to measure the axially resolved temperature profile of the catalyst bed, which makes the reaction kinetics inside the reactor visible. This allows for understanding the actual influence of the reaction kinetics on the system; while pure gas concentration measurements at the catalytic reactor outlet show near-equilibrium conditions, the inhere presented temperature profile shows that it is insufficient to base a reaction mechanism development on close equilibrium data. The new experimental data allow for achieving much higher quality in the modeling efforts. Additionally, by carefully controlling the available active surface via dilution in the experiment, it was possible to slow down the catalyst conversion rate, which helped during the adjustment of the reaction kinetics. To assess the accuracy of the revised mechanism, a monolith experiment from the literature was simulated. The results show that the fitted reaction mechanism was able to accurately predict the experimental outcomes for various inlet mass flows, temperatures, and steam-to-carbon ratios.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Jana RichterORCiD, Fabian RachowORCiD, Johannes Israel, Norbert Roth, Evgenia CharlaftiORCiD, Vivien GüntherORCiD, Jan Ingo FlegeORCiD, Fabian MaußORCiD
DOI:https://doi.org/10.3390/catal13050884
ISSN:2073-4344
Title of the source (English):Catalysts
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2023
Tag:1D modeling; fixed-bed reactor experiments; kinetic reaction mechanism development; methane steam reforming; nickel catalyst; reaction rates
Volume/Year:13
Issue number:5
Number of pages:23
Article number:884
Fundername (not EU):Deutsche Forschungsgemeinschaft (DFG) / Open-Access-Publikationskosten / (2023 -2025) / 512881332
Fundername (not EU):Bundesministerium für Wirtschaft und Klimaschutz (BMWK) / FKZ 03EWS002A
Fundername (not EU):Energie-Innovations-Zentrum (EIZ) / 03SF0693A
Fundername (not EU):Bundesministerium für Bildung und Forschung (BMBF) / 85056897
Way of publication:Open Access
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Thermodynamik / Thermische Verfahrenstechnik
Zentrale Einrichtungen / Energie-Innovationszentrum / Energy Storage and Conversion Lab
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.