The 10 most recently published documents
For the yearly over 500,000 vehicle inspections of the German Federal Logistics and Mobility Office (BALM), crew rosters must be scheduled to efficiently achieve Germany's road inspection control targets. For that, we present a model to solve the respective duty scheduling and crew rostering problem in order to obtain duty rosters that comply with numerous legal regulations while maximizing the `control success' to achieve the control targets. We formulate the Template Assignment Problem, which can be modelled as a large scale mixed-integer linear program. Here, feasible combinations of control topics are assigned to the duties using a hypergraph approach. The model is used in production by BALM, and we prove its effectiveness on a number of real-world instances.
Reconstructing the surfaces of deformable objects from correspondences between a 3D template and a 2D image is well studied under Shape-from-Template (SfT) methods; however, existing approaches break down when topological changes accompany the deformation. We propose a principled extension of SfT that enables reconstruction in the presence of such changes. Our approach is initialized with a classical SfT solution and iteratively adapts the template by partitioning its spatial domain so as to minimize an energy functional that jointly encodes physical plausibility and reprojection consistency. We demonstrate that the method robustly captures a wide range of practically relevant topological events including tears and cuts on bounded 2D surfaces, thereby establishing the first general framework for topological-change-aware SfT. Experiments on both synthetic and real data confirm that our approach consistently outperforms baseline methods.
Large-scale functional network time series model solved with mathematical programming approach
(2025)
A functional network autoregressive model is proposed for studying large-scale network time series observed at high temporal resolution. The model incorporates high-dimensional curves to capture both serial and cross-sectional dependence in large-scale network functional time series. Estimation of the model is approached using a Mixed Integer Optimization method. Simulation studies confirm the consistency of parameter and adjacency matrix estimation. The method is applied to data from a real-life natural gas supply network. Compared to alternative prediction models, the proposed model delivers more accurate day-ahead hourly out-of-sample forecasts of the gas inflows and outflows at most gas nodes.
Euclidean diffusion models have achieved remarkable success in generative modeling across diverse domains, and they have been extended to manifold case in recent advances. Instead of explicitly utilizing the structure of special manifolds as studied in previous works, we investigate direct sampling of the Euclidean diffusion models for general manifold-constrained data in this paper. We reveal the multiscale singularity of the score function in the embedded space of manifold, which hinders the accuracy of diffusion-generated samples. We then present an elaborate theoretical analysis of the singularity structure of the score function by separating it along the tangential and normal directions of the manifold. To mitigate the singularity and improve the sampling accuracy, we propose two novel methods: (1) Niso-DM, which introduces non-isotropic noise along the normal direction to reduce scale discrepancies, and (2) Tango-DM, which trains only the tangential component of the score function using a tangential-only loss function. Numerical experiments demonstrate that our methods achieve superior performance on distributions over various manifolds with complex geometries.
Mixed-Integer Linear Programming (MIP) is applicable to such a wide range of real-world decision problems that the competition for the best code to solve such problems has lead to tremendous progress over the last decades. While current solvers can solve some of the problems that seemed completely out-of-reach just 10 years ago, there are always relevant MIP problems that currently cannot be solved. With the Smoothie solver we intend to solve extremely hard MIP problems by building on the many years that went into the development of several state-of-the-art MIP solvers and by utilizing some of the largest computing resources available. The high-level task parallelization framework UG (Ubiquity Generator) is used and extended by Smoothie to build a solver that uses large-scale parallelization to distribute the solution of a single MIP on a shared- or distributed-memory computing infrastructure, thereby employing several established MIP solvers simultaneously. For the first development phase, which is the topic of this report, both FICO Xpress and Gurobi are used in concurrent mode on a single machine, while information on incumbent solutions and explored branch-and-bound subtrees is exchanged. A dynamic restarting mechanism ensures that solver configurations are selected that promise most suitable for the MIP to be solved. We report on initial findings using this early version of Smoothie on unsolved problems from MIPLIB 2017.