## 05C65 Hypergraphs

### Refine

#### Document Type

- ZIB-Report (6)
- Doctoral Thesis (1)

#### Keywords

- assignment (2)
- hyperassignment (2)
- Covering (1)
- Factors (1)
- Hall condition (1)
- Hall's Theorem (1)
- König's Theorem (1)
- Matchings in hypergraphs (1)
- Normal hypergraphs (1)
- Packing (1)

#### Institute

The perfect matching polytope, i.e. the convex hull of (incidence vectors of) perfect matchings of a graph is used in many combinatorial algorithms. Kotzig, Lovász and Plummer developed a decomposition theory for graphs with perfect matchings and their corresponding polytopes known as the tight cut decomposition which breaks down every graph into a number of indecomposable graphs, so called bricks. For many properties that are of interest on graphs with perfect matchings, including the description of the perfect matching polytope, it suffices to consider these bricks. A key result by Lovász on the tight cut decomposition is that the list of bricks obtained is the same independent of the choice of tight cuts made during the tight cut decomposition procedure. This implies that finding a tight cut decomposition is polynomial time equivalent to finding a single tight cut.
We generalise the notions of a tight cut, a tight cut contraction and a tight cut decomposition to hypergraphs. By providing an example, we show that the outcome of the tight cut decomposition on general hypergraphs is no longer unique. However, we are able to prove that the uniqueness of the tight cut decomposition is preserved on a slight generalisation of uniform hypergraphs. Moreover, we show how the tight cut decomposition leads to a decomposition of the perfect matching polytope of uniformable hypergraphs and that the recognition problem for tight cuts in uniformable hypergraphs is polynomial time solvable.

We state purely combinatorial proofs for König- and Hall-type theorems for a wide class of combinatorial optimization problems. Our methods rely on relaxations of the matching and vertex cover problem and, moreover, on the strong coloring properties admitted by bipartite graphs and their generalizations.

We prove characterizations of the existence of perfect f-matchings in uniform mengerian and perfect hypergraphs. Moreover, we investigate the f-factor problem in balanced hypergraphs. For uniform balanced hypergraphs we prove two existence theorems with purely combinatorial arguments, whereas for non-uniform balanced hypergraphs we show that the f-factor problem is NP-hard.

This thesis deals with the hypergraph assignment problem (HAP), a set partitioning problem in a special type of hypergraph. The HAP generalizes the assignment problem from bipartite graphs to what we call bipartite hypergraphs, and is motivated by applications in railway vehicle rotation planning. The main contributions of this thesis concern complexity, polyhedral results, analyses of random instances, and primal methods for the HAP. We prove that the HAP is NP-hard and APX-hard even for small hyperedge sizes and hypergraphs with a special partitioned structure. We also study the complexity of the set packing and covering relaxations of the HAP, and present for certain cases polynomial exact or approximation algorithms. A complete linear description is known for the assignment problem. We therefore also study the HAP polytope. There, we have a huge number of facet-defining inequalities already for a very small problem size. We describe a method for dividing the inequalities into equivalence classes without resorting to a normal form. Within each class, facets are related by certain symmetries and it is sufficient to list one representative of each class to give a complete picture of the structural properties of the polytope. We propose the algorithm "HUHFA" for the classification that is applicable not only to the HAP but combinatorial optimization problems involving symmetries in general. In the largest possible HAP instance for which we could calculate the complete linear description, we have 14049 facets, which can be divided into 30 symmetry classes. We can combinatorially interpret 16 of these classes. This is possible by employing cliques to generalize the odd set inequalities for the matching problem. The resulting inequalities are valid for the polytope associated with the set packing problem in arbitrary hypergraphs and have a clear combinatorial meaning. An analysis of random instances provides a better insight into the structure of hyperassignments. Previous work has extensively analyzed random instances for the assignment problem theoretically and practically. As a generalization of these results for the HAP, we prove bounds on the expected value of a minimum cost hyperassignment that uses half of the maximum possible number of hyperedges that are not edges. In a certain complete partitioned hypergraph G2,2n with i. i. d. exponential random variables with mean 1 as hyperedge costs it lies between 0.3718 and 1.8310 if the vertex number tends to infinity. Finally, we develop an exact combinatorial solution algorithm for the HAP that combines three methods: A very large-scale neighborhood search, the composite columns method for the set partitioning problem, and the network simplex algorithm.

The hypergraph assignment problem (HAP) is the generalization of assignments
from directed graphs to directed hypergraphs. It serves, in particular,
as a universal tool to model several train composition rules in vehicle rotation
planning for long distance passenger railways. We prove that even for problems
with a small hyperarc size and hypergraphs with a special partitioned structure
the HAP is NP-hard and APX-hard. Further, we present an extended integer
linear programming formulation which implies, e. g., all clique inequalities.

Vehicle rotation planning is a fundamental problem in
rail transport. It decides how the railcars, locomotives, and
carriages are operated in order to implement the trips of the
timetable. One important planning requirement is operational
regularity, i.e., using the rolling stock in the same way on every
day of operation. We propose to take regularity into account by
modeling the vehicle rotation planning problem as a minimum cost
hyperassignment problem (HAP). Hyperassignments are generalizations
of assignments from directed graphs to directed hypergraphs.
Finding a minimum cost hyperassignment is
NP-hard.
Most instances arising from regular vehicle rotation planning, however, can
be solved well in practice. We show that, in particular, clique
inequalities strengthen the canonical LP relaxation substantially.