## 05B35 Matroids, geometric lattices [See also 52B40, 90C27]

### Refine

#### Document Type

- ZIB-Report (3)

#### Language

- English (3)

#### Has Fulltext

- yes (3)

#### Is part of the Bibliography

- no (3)

#### Keywords

#### Institute

Given a combinatorial optimization problem and a subset $N$ of natural numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of $N$. In this paper we briefly touch on questions that addresses common grounds and differences of the complexity of a combinatorial optimization problem and its cardinality constrained version. Afterwards we focus on polytopes associated with cardinality constrained combinatorial optimization problems. Given an integer programming formulation for a combinatorial optimization problem, by essentially adding Grötschel's cardinality forcing inequalities, we obtain an integer programming formulation for its cardinality restricted version. Since the cardinality forcing inequalities in their original form are mostly not facet defining for the associated polyhedra, we discuss possibilities to strengthen them.

Edmonds showed that the so-called rank inequalities and the nonnegativity constraints provide a complete linear description of the matroid polytope. By essentially adding Grötschel's cardinality forcing inequalities, we obtain a complete linear description of the cardinality constrained matroid polytope which is the convex hull of the incidence vectors of those independent sets that have a feasible cardinality. Moreover, we show how the separation problem for the cardinality forcing inequalities can be reduced to that for the rank inequalities. We also give necessary and sufficient conditions for a cardinality forcing inequality to be facet defining.

A subset ${\cal C}$ of the power set of a finite set $E$ is called cardinality homogeneous if, whenever ${\cal C}$ contains some set $F$, ${\cal C}$ contains all subsets of $E$ of cardinality $|F|$. Examples of such set systems ${\cal C}$ are the sets of circuits and the sets of cycles of uniform matroids and the sets of all even or of all odd cardinality subsets of $E$. With each cardinality homogeneous set system ${\cal C}$, we associate the polytope $P({\cal C})$, the convex hull of the incidence vectors of all sets in ${\cal C}$, and provide a complete and nonredundant linear description of $P({\cal C})$. We show that a greedy algorithm optimizes any linear function over $P({\cal C})$, give an explicit optimum solution of the dual linear program, and provide a polynomial time separation algorithm for the class of polytopes of type $P({\cal C})$.