## 00.00.00 GENERAL

Calculation of clinch and elimination numbers for sports leagues with multiple tiebreaking criteria
(2018)

The clinch (elimination) number is a minimal number of future wins (losses) needed to clinch (to be eliminated from) a specified place in a sports league. Several optimization models and computational results are shown in this paper for calculating clinch and elimination numbers in the presence of predefined multiple tiebreaking criteria. The main subject of this paper is to provide a general algorithmic framework based on integer programming with utilizing possibly multilayered upper and lower bounds.

Optimization models often feature disjunctions of polytopes as
submodels. Such a disjunctive set is initially (at best) relaxed to
its convex hull, which is then refined by branching.
To measure the error of the convex relaxation, the (relative)
difference between the volume of the convex hull and the volume of the
disjunctive set may be used. This requires a method to compute the
volume of the disjunctive set. Naively, this can be done via
inclusion/exclusion and leveraging the existing code for the volume
of polytopes. However, this is often inefficient.
We propose a revised variant of an old algorithm by Bieri and Nef
(1983) for this purpose. The algorithm uses a sweep-plane to
incrementally calculate the volume of the disjunctive set as a
function of the offset parameter of the sweep-plane.

Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG.

PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch & Bound (B&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.

We find previously unknown families which imply Frankl’s conjecture using an algorithmic framework. The conjecture states that for any non-empty union-closed (or Frankl) family there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine whether a given Frankl family implies the conjecture for all Frankl families which contain it. A Frankl family is Non–Frankl-Complete (Non–FC), if it does not imply the conjecture in its elements for some Frankl family that contains it. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem. This method allows us to find a counterexample to a ten-year-old conjecture by R. Morris about the structure of generators for Non–FC-families.

Traditionally, Lagrangian fields such as finite-time Lyapunov exponents (FTLE)
are precomputed on a discrete grid and are ray casted afterwards. This, however,
introduces both grid discretization errors and sampling errors during ray marching.
In this work, we apply a progressive, view-dependent Monte Carlo-based approach
for the visualization of such Lagrangian fields in time-dependent flows. Our ap-
proach avoids grid discretization and ray marching errors completely, is consistent,
and has a low memory consumption. The system provides noisy previews that con-
verge over time to an accurate high-quality visualization. Compared to traditional
approaches, the proposed system avoids explicitly predefined fieldline seeding
structures, and uses a Monte Carlo sampling strategy named Woodcock tracking
to distribute samples along the view ray. An acceleration of this sampling strategy
requires local upper bounds for the FTLE values, which we progressively acquire
during the rendering. Our approach is tailored for high-quality visualizations of
complex FTLE fields and is guaranteed to faithfully represent detailed ridge surface
structures as indicators for Lagrangian coherent structures (LCS). We demonstrate
the effectiveness of our approach by using a set of analytic test cases and real-world numerical simulations.

Many scientific applications deal with data from a multitude of different sources, e.g., measurements, imaging and simulations. Each source provides an additional perspective on the phenomenon of interest, but also comes with specific limitations, e.g. regarding accuracy, spatial and temporal availability. Effectively combining and analyzing such multimodal and partially incomplete data of limited accuracy in an integrated way is challenging. In this work, we outline an approach for an integrated analysis and visualization of the atmospheric impact of volcano eruptions. The data sets comprise observation and imaging data from satellites as well as results from numerical particle simulations. To analyze the clouds from the volcano eruption in the spatiotemporal domain we apply topological methods. Extremal structures reveal structures in the data that support clustering and comparison. We further discuss the robustness of those methods with respect to different properties of the data and different parameter setups. Finally we outline open challenges for the effective integrated visualization using topological methods.

To achieve high floating point compute performance, modern processors draw on short vector SIMD units, as found e.g. in Intel CPUs (SSE, AVX1, AVX2 as well as AVX-512 on the roadmap) and the Intel Xeon Phi coprocessor, to operate an increasingly larger number of operands simultaneously. Making use of SIMD vector operations therefore is essential to get close to the processor’s floating point peak performance.
Two approaches are typically used by programmers to utilize the vector units: compiler driven vectorization via directives and code annotations, and manual vectorization by means of SIMD intrinsic operations or assembly.
In this paper, we investigate the capabilities of the current Intel compiler (version 15 and later) to generate vector code for non-trivial coding patterns within loops. Beside the more or less uniform data-parallel standard loops or loop nests, which are typical candidates for SIMDfication, the occurrence of e.g. (conditional) function calls including branching, and early returns from functions may pose difficulties regarding the effective use of vector operations. Recent improvements of the compiler's capabilities involve the generation of SIMD-enabled functions. We will study the effectiveness of the vector code generated by the compiler by comparing it against hand-coded intrinsics versions of different kinds of functions that are invoked within innermost loops.

With the growing number of hardware components and the increasing software complexity in the upcoming exascale computers, system failures will become the norm rather than an exception for long-running applications. Fault-tolerance can be achieved by the creation of checkpoints during the execution of a parallel program. Checkpoint/Restart (C/R) mechanisms allow for both task migration (even if there were no hardware faults) and restarting of tasks after the occurrence of hardware faults. Affected tasks are then migrated to other nodes which may result in unfortunate process placement and/or oversubscription of compute resources. In this paper we analyze the impact of unfortunate process placement and oversubscription of compute resources on the performance and scalability of two typical HPC application workloads, CP2K and MOM5. Results are given for a Cray XC30/40 with Aries dragonfly topology. Our results indicate that unfortunate process placement has only little negative impact while oversubscription substantially degrades the performance. The latter might be only (partially) beneficial when placing multiple applications with different computational characteristics on the same node.