97-01 Instructional exposition (textbooks, tutorial papers, etc.)
Refine
Document Type
- ZIB-Report (3)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Komplexität (1)
- Komplexitätstheorie (1)
- Rundreisen (1)
- TSP (1)
- Travelling-Salesman-Problem (1)
- diskrete Mathematik (1)
- optimale Tour (1)
Institute
„Diskrete Mathematik, was ist das?“, ist eine typische Frage von Lehrern mit traditioneller Mathematikausbildung, denn dort kam und kommt diskrete Mathematik kaum vor. Die etwas Aufgeschlosseneren fragen: „Wenn (schon wieder) etwas Neues unterrichtet werden soll, was soll denn dann im Lehrplan gestrichen werden?“ Auf die zweite Frage wird hier nicht eingegangen. Das Ziel dieses Aufsatzes ist es, in diskrete Mathematik einzuführen, Interesse an diesem Fachgebiet zu wecken und dazu anzuregen, dieses auch im Schulunterricht (ein wenig) zu berücksichtigen. Die Schüler und Schülerinnen werden dafür dankbar sein – eine Erfahrung, die in vielen Unterrichtsreihen gemacht wurde.
Was Komplexität ist, weiß niemand so richtig. In vielen Wissenschaftsgebieten wird der Begriff Komplexität verwendet, überall mit etwas anderer Bedeutung. Mathematik und Informatik hab en eine eigene Theorie hierzu entwickelt: die Komplexitätstheorie. Sie stellt zwar grundlegende Begriffe bereit, aber leider sind die meisten wichtigen Fragestellungen noch ungelöst. Diese kurze Einführung konzentriert sich auf einen speziellen, aber bedeutenden Aspekt der Theorie: Lösbarkeit von Problemen in deterministischer und nichtdeterministischer polynomialer Zeit. Hinter der für Uneingeweihte etwas kryptischen Frage "P = NP?" verbirgt sich das derzeit wichtigste Problem der Komplexitätstheorie. Anhand dieser Fragestellung werden einige Aspekte der Theorie erläutert und formell erklärt, was "P = NP?" bedeutet. Es geht nicht nur um komplizierte algorithmische Mathematik und Informatik, sondern um grundsätzliche Fragen unserer Lebensumwelt. Kann man vielleicht beweisen, dass es für viele Probleme unseres Alltags keine effizienten Lösungsmethoden gibt?
Das Travelling-Salesman-Problem (TSP) ist das am intensivsten untersuchte kombinatorische Optimierungsproblem. In diesem Abschnitt wird eine Einführung in das TSP gegeben. Es werden Problemstellungen erläutert, Anwendungen skizziert und einige Schwierigkeiten bei der korrekten Modellierung der Zielfunktion dargelegt. Es ist gar nicht so klar, was in einem konkreten Problem die wirkliche Entfernung ist. Exakte und approximative Lösungsverfahren werden an Beispielen skizziert, und es wird angedeutet, dass man, obwohl TSPs zu den theoretisch schweren Problemen zählen, in der Praxis TSPs von atemberaubender Größe lösen kann.