92-XX BIOLOGY AND OTHER NATURAL SCIENCES
Refine
Document Type
- ZIB-Report (9)
- Doctoral Thesis (1)
- Software (1)
Language
- English (11)
Is part of the Bibliography
- no (11)
Keywords
- 2-photon microscopy (1)
- NBLAST (1)
- Proteins, Conformation Space, Meshfree Methods (1)
- brain wiring (1)
- cell type (1)
- clustering (1)
- cow, potassium, model, ode (1)
- cross-correlation (1)
- determination of time of death (1)
- electron tomography (1)
Polymorphism is the property exhibited by many inorganic and organic molecules to crystallize in more than one crystal structure. There is a strong need for understanding the influencing factors on polymorphism, as it is responsible for differences in many physicochemical properties such as stability and solubility. Nearly 80 % of marketed drugs exhibit polymorphism. In this work, we took the model system of paracetamol to investigate the influence of solvent choice on its polymorphism. Different methods were developed and employed to understand the influence of small organic solvents on the crystallization of paracetamol. Non-equilibrium molecular dynamics simulations with periodic simulated annealing were used as a tool to probe the nature of precursors of the metastable intermediates occurring in the crystallization process. Using this method, it was found that the structures of the building blocks of crystals of paracetamol is governed by solvent-solute interactions. In situ Raman spectroscopy was used with a custom-made acoustic levitator to follow crystallization. This set-up is a reliable method for investigating solvent influence, attenuating heterogeneous nucleation and stabilizing other environmental factors. It was established that as a solvent, ethanol is much stronger than methanol in its effect of driving paracetamol solutions to their crystal form. The time-resolved Raman spectroscopy crystallization data was processed using a newly developed objective function based non-negative matrix factorization method (NMF). An orthogonal time-lapse photography was used in conjunction with NMF to get unique and accurate factors that pertain to the spectra and concentrations of different moieties of paracetamol crystallization existing as latent components in the untreated data.
Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance to the calcium channels determines the release probability and thereby the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact first- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the filtered signal’s second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to efficiently compare different spatial coarse graining approaches for a specific model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a filtered stochastic signal.
Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a 'serial synapse formation' model, where at any time point only a single 'synaptogenic' filopodium suppresses the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization and reduced synapse formation, which is sufficient to cause the destabilization of entire axon terminals. Our model provides a filopodial 'winner-takes-all' mechanism that ensures the formation of an appropriate number of synapses.
High performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one of them being potassium, is indispensable for the prevention of imbalances. The potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, it is closely related with the glucose and electrolyte metabolism. In this paper, we present a dynamical model for the potassium balance in lactating and non-lactating dairy cows based on ordinary differential equations. Parameter values are obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for three different scenarios: potassium balance in (i) non-lactating cows with varying feed intake, (ii) non-lactating cows with varying potassium fraction in the diet, and (iii) lactating cows with varying milk production levels. The results give insights into the short and long term potassium metabolism, providing an important step towards the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.
Background
We assessed the novel MACC1 gene to further stratify stage II colon cancer
patients with proficient mismatch repair (pMMR).
Patients and methods
Four cohorts with 596 patients were analyzed: Charité 1 discovery cohort
was assayed for MACC1 mRNA expression and MMR in cryo-preserved
tumors. Charité 2 comparison cohort was used to translate MACC1 qRT-
PCR analyses to FFPE samples. In the BIOGRID 1 training cohort MACC1
mRNA levels were related to MACC1 protein levels from
immunohistochemistry in FFPE sections; also analyzed for MMR.
Chemotherapy-naïve pMMR patients were stratified by MACC1 mRNA and
protein expression to establish risk groups based on recurrence-free
survival (RFS). Risk stratification from BIOGRID 1 was confirmed in the
BIOGRID 2 validation cohort. Pooled BIOGRID datasets produced a best
effect-size estimate.
Results
In BIOGRID 1, using qRT-PCR and immunohistochemistry for MACC1
detection, pMMR/MACC1-low patients had a lower recurrence probability
versus pMMR/MACC1-high patients (5-year RFS of 92% and 67% versus
100% and 68%, respectively). In BIOGRID 2, longer RFS was confirmed
for pMMR/MACC1-low versus pMMR/MACC1-high patients (5-year RFS of
100% versus 90%, respectively). In the pooled dataset, 6.5% of patients
were pMMR/MACC1-low with no disease recurrence, resulting in a 17%
higher 5-year RFS (95% CI (12.6-21.3%)) versus pMMR/MACC1-high
patients (P=0.037). Outcomes were similar for pMMR/MACC1-low and
deficient MMR (dMMR) patients (5-year RFS of 100% and 96%,
respectively).
Conclusions
MACC1 expression stratifies colon cancer patients with unfavorable pMMR
status. Stage II colon cancer patients with pMMR/MACC1-low tumors have
a similar favorable prognosis to those with dMMR with potential
implications for the role of adjuvant therapy.
Temperature-based estimation of time of death (ToD) can be per-
formed either with the help of simple phenomenological models of corpse
cooling or with detailed mechanistic (thermodynamic) heat transfer mod-
els. The latter are much more complex, but allow a higher accuracy of
ToD estimation as in principle all relevant cooling mechanisms can be
taken into account.
The potentially higher accuracy depends on the accuracy of tissue and
environmental parameters as well as on the geometric resolution. We in-
vestigate the impact of parameter variations and geometry representation
on the estimated ToD based on a highly detailed 3D corpse model, that
has been segmented and geometrically reconstructed from a computed to-
mography (CT) data set, differentiating various organs and tissue types.
From that we identify the most crucial parameters to measure or estimate,
and obtain a local uncertainty quantifcation for the ToD.
The role of titanium surface nanotopography on preosteoblast morphology, adhesion and migration
(2017)
Surface structuring of titanium-based implants with appropriate nanotopographies can significantly modulate their impact on the biological behavior of cells populating these implants. Implant assisted bone tissue repair and regeneration require functional adhesion and expansion of bone progenitors. The surface nanotopography of implant materials used to support bone healing and its effect on cell behavior, in particular cell adhesion, spreading, expansion, and motility, is still not clearly understood. The aim of this study is to investigate preosteoblast proliferation, adhesion, morphology, and migration on different titanium materials with similar surface chemistry, but distinct nanotopographical features. Sonochemical treatment and anodic oxidation were employed to fabricate disordered – mesoporous titania (TMS), and ordered – titania nanotubular (TNT) topographies respectively. The morphological evaluation revealed a surface dependent shape, thickness, and spreading of cells owing to different adherence behavior. Cells were polygonal-shaped and well-spread on glass and TMS, but displayed an elongated fibroblast-like morphology on TNT surfaces. The cells on glass however, were much flatter than on nanostructured surfaces. Both nanostructured surfaces impaired cell adhesion, but TMS was more favorable for cell growth due to its support of cell attachment and spreading in contrast to TNT. Quantitative wound healing assay in combination with live-cell imaging revealed that cells seeded on TMS surfaces migrated in close proximity to neighboring cells and less directed when compared to the migratory behavior on other surfaces. The results indicate distinctly different cell adhesion and migration on ordered and disordered titania nanotopographies, providing important information that could be used in optimizing titanium-based scaffold design to foster bone tissue growth and repair.
Neural circuit mapping is generating datasets of 10,000s of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches.
We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types including searching neurons against transgene expression patterns. Finally we show that NBLAST is effective with data from other invertebrates and zebrafish.
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts’ opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.