## 90C59 Approximation methods and heuristics

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (17)
- Doctoral Thesis (3)
- Master's Thesis (2)

#### Language

- English (22)

#### Is part of the Bibliography

- no (22)

#### Keywords

#### Institute

Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.

Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.

In the literature for mixed integer programming, heuristic algorithms (particularly primal heuristics) are often considered as stand-alone procedures; in that context, heuristics are treated as an alternative to solving a problem to proven optimality. This conceals the fact that heuristic algorithms are a fundamental component of state-of-the-art global solvers for mixed integer linear programming (MIP) and mixed integer nonlinear programming (MINLP).
In the present thesis, we focus on this latter aspect; we study heuristic algorithms that are tightly integrated within global MINLP solvers and analyze their impact on the overall solution process. Our contributions comprise generalizations of primal heuristics for MIP towards MINLP as well as novel ideas for MINLP primal heuristics and for heuristic algorithms to take branching decisions and to collect global information in MIP. These are:
- Shift-and-Propagate, a novel propagation heuristic for MIP that does not require the solution to an LP relaxation,
- a generic way to generalize large neighborhood search (LNS) heuristics from MIP to MINLP,
- an Objective Feasibility Pump heuristic for nonconvex MINLP that uses second-order information and a dynamic selection of rounding procedures,
- RENS, an LNS start heuristic for MINLP that optimizes over the set of feasible roundings of an LP solution,
- Undercover, an LNS start heuristic for MINLP that solves a largest sub-MIP of a given MINLP,
- Rapid Learning, a heuristic algorithm to generate globally valid conflict constraints for MIPs,
- Cloud Branching, a heuristic algorithm that exploits dual degeneracy to reduce the number of candidates for branching variable selection.
Additionally, we propose a new performance measure, the primal integral, that captures the benefits of primal heuristics better than traditional methods. In our computational study, we compare the performance of the MIP and MINLP solver SCIP with and without primal heuristics on six test sets with altogether 983 instances from academic and industrial sources, including our project partners ForNe, SAP, and Siemens. We observe that heuristics improve the solver performance regarding all measures that we used - by different orders of magnitude. We further see that the harder a problem is to solve to global optimality, the more important the deployment of primal heuristics becomes.
The algorithms presented in this thesis are available in source code as part of the solver SCIP, of which the author has been a main developer for the last years. Methods described in this thesis have also been re-implemented within several commercial and noncommercial MIP and MINLP software packages, including Bonmin, CBC, Cplex, Gams, Sulum, and Xpress.

We extend the primal-dual approximation technique of Goemans and Williamson to the Steiner connectivity problem, a kind of Steiner tree problem in hypergraphs. This yields a (k+1)-approximation algorithm for the case that k is the minimum of the maximal number of nodes in a hyperedge minus 1 and the maximal number of terminal nodes in a hyperedge. These results require the proof of a degree property for terminal nodes in hypergraphs which generalizes the well-known graph property that the average degree of terminal nodes in Steiner trees is at most 2.

Primal heuristics are an important component of state-of-the-art codes for mixed integer nonlinear programming (MINLP). In this article we give a compact overview of primal heuristics for MINLP that have been suggested in the literature of recent years. We sketch the fundamental concepts of different classes of heuristics and discuss specific implementations. A brief computational experiment shows that primal heuristics play a key role in achieving feasibility and finding good primal bounds within a global MINLP solver.

In modern MIP solvers, primal heuristics play a major role in finding and improving feasible solutions early in the solution process. However, classical performance measures such as time to optimality or number of branch-and-bound nodes reflect the impact of primal heuristics on the overall solving process badly. This article discusses the question of how to evaluate the effect of primal heuristics.
Therefore, we introduce a new performance measure, the "primal integral" which depends on the quality of solutions found during the solving process as well as on the points in time when they are found. Our computational results reveal that heuristics improve the performance of MIP solvers in terms of the primal bound by around 80%. Further, we compare five state-of-the-art MIP solvers w.r.t. the newly proposed measure.

Shift-And-Propagate
(2013)

For mixed integer programming, recent years have seen a growing interest in the design of general purpose primal heuristics for use inside complete solvers. Many of these heuristics rely on an optimal LP solution. Finding this may itself take a significant amount of time.
The presented paper addresses this issue by the introduction of the Shift-And-Propagate heuristic. Shift-And-Propagate is a pre-root primal heuristic that does not require a previously found LP solution. It applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement of existing rounding and propagation heuristics.

RENS – the optimal rounding
(2012)

This article introduces RENS, the relaxation enforced neighborhood search, a large neighborhood search algorithm for mixed integer nonlinear programming (MINLP) that uses a sub-MINLP to explore the set of feasible roundings of an optimal solution x' of a linear or nonlinear relaxation. The sub-MINLP is constructed by fixing integer variables x_j with x'_j in Z and bounding the remaining integer variables to x_j in {floor(x'_j), ceil(x'_j)}. We describe two different applications of RENS: as a standalone algorithm to compute an optimal rounding of the given starting solution and as a primal heuristic inside a complete MINLP solver.
We use the former to compare different kinds of relaxations and the impact of cutting planes on the roundability of the corresponding optimal solutions. We further utilize RENS to analyze the performance of three rounding heuristics implemented in the branch-cut-and-price framework SCIP. Finally, we study the impact of RENS when it is applied as a primal heuristic inside SCIP.
All experiments were performed on three publically available test sets of mixed integer linear programs (MIPs), mixed integer quadratically constrained programs (MIQCPs), and MINLPs, using solely software which is available in source code.
It turns out that for these problem classes 60% to 70% of the instances have roundable relaxation optima and that the success rate of RENS does not depend on the percentage of fractional variables. Last but not least, RENS applied as primal heuristic complements nicely with existing root node heuristics in SCIP and improves the overall performance.

We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem.
We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.

Primal heuristics are an important component of state-of-the-art codes for
mixed integer programming. In this paper, we focus on primal heuristics
that only employ computationally inexpensive procedures such as rounding
and logical deductions (propagation). We give an overview of eight
different approaches. To assess the impact of these primal heuristics on
the ability to find feasible solutions, in particular early during search,
we introduce a new performance measure, the primal integral. Computational
experiments evaluate this and other measures on MIPLIB~2010 benchmark
instances.