## 90C26 Nonconvex programming, global optimization

### Refine

#### Document Type

- ZIB-Report (17)
- Doctoral Thesis (2)

#### Keywords

- Pooling Problem (4)
- nonconvex (3)
- Cutting Planes (2)
- Large Neighborhood Search (2)
- MINLP (2)
- Nonconvexity (2)
- Primal Heuristic (2)
- Quadratic Programming (2)
- Relaxation (2)
- Relaxations (2)

#### Institute

This paper discusses how to build a solver for mixed integer quadratically constrained programs (MIQCPs) by extending a framework for constraint integer programming (CIP). The advantage of this approach is that we can utilize the full power of advanced MIP and CP technologies. In particular, this addresses the linear relaxation and the discrete components of the problem. For relaxation, we use an outer approximation generated by linearization of convex constraints and linear underestimation of nonconvex constraints. Further, we give an overview of the reformulation, separation, and propagation techniques that are used to handle the quadratic constraints efficiently. We implemented these methods in the branch-cut-and-price framework SCIP. Computational experiments indicates the potential of the approach.

In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.

We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.

We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem.
We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.

この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し，その３つの構成要素：モデリン
グ言語Zimpl, 線形計画（LP: linear programming) ソルバSoPlex, そして，制約整数計画(CIP: constraint
integer programming) に対するソフトウェア・フレームワークSCIP, について述べる．本論文では，この３つの
構成要素を利用して，どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization
problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化
し解くのかを説明する．SCIP は，現在，最も高速なMIP,MINLP ソルバの１つである．いくつかの例により，
Zimpl, SCIP, SoPlex の利用方法を示すとともに，利用可能なインタフェースの概要を示す．最後に，将来の開
発計画の概要について述べる．

This paper is concerned with optimal operation of pressurized water supply networks at a fixed point in time. We use a mixed-integer nonlinear programming (MINLP) model incorporating both the nonlinear physical laws and the discrete decisions such as switching pumps on and off. We demonstrate that for instances from our industry partner, these stationary models can be solved to ε-global optimality within small running times using problem-specific presolving and state-of-the-art MINLP algorithms.
In our modeling, we emphasize the importance of distinguishing between what we call real and imaginary flow, i.e., taking into account that the law of Darcy-Weisbach correlates pressure difference and flow along a pipe if and only if water is available at the high pressure end of a pipe. Our modeling solution extends to the dynamic operative planning problem.

This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.

Optimization-based bound tightening (OBBT) is a domain reduction technique commonly used in nonconvex mixed-integer nonlinear programming that solves a sequence of auxiliary linear programs. Each variable is minimized and maximized to obtain the tightest bounds valid for a global linear relaxation. This paper shows how the dual solutions of the auxiliary linear programs can be used to learn what we call Lagrangian variable bound constraints. These are linear inequalities that explain OBBT's domain reductions in terms of the bounds on other variables and the objective value of the incumbent solution. Within a spatial branch-and-bound algorithm, they can be learnt a priori (during OBBT at the root node) and propagated within the search tree at very low computational cost. Experiments with an implementation inside the MINLP solver SCIP show that this reduces the number of branch-and-bound nodes and speeds up solution times.

We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.

This is a technical report for the SCIP constraint handler cons_bivariate. We describe a cut-generation algorithm for a class of bivariate twice continuously differentiable functions with
fixed convexity behavior over a box.
Computational results comparing our cut-generation algorithms with
state-of-the-art global
optimization software on a series of randomly generated test instances are reported and discussed.