## 90C26 Nonconvex programming, global optimization

### Refine

#### Document Type

- ZIB-Report (3)
- Doctoral Thesis (1)

#### Keywords

- Pooling Problem (4) (remove)

#### Institute

- Mathematical Optimization (4) (remove)

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which products are mixed in intermediate pools in order to meet quality targets at their destinations. In this technical report, we characterize the extreme points of the convex hull of our non-convex set, and show that they are not finite, i.e., the convex hull is not polyhedral. This analysis was used to derive valid nonlinear convex inequalities and show that, for a specific case, they characterize the convex hull of our set. The new valid inequalities and computational results are presented in ZIB Report 18-12.

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which input materials are mixed in intermediate pools, with the outputs of these pools further mixed to make output products meeting given attribute percentage requirements. Our relaxations are derived by considering a set which arises from the formulation by considering a single product, a single attibute, and a single pool. The convex hull of the resulting nonconvex set is not polyhedral. We derive valid linear and convex nonlinear inequalities for the convex hull, and demonstrate that different subsets of these inequalities define the convex hull of the nonconvex set in three cases determined by the parameters of the set. Computational results on literature instances and newly created larger test instances demonstrate that the inequalities can significantly strengthen the convex relaxation of the pq-formulation of the pooling problem, which is the relaxation known to have the strongest bound.

Exploiting structure in non-convex quadratic optimization and gas network planning under uncertainty
(2017)

The amazing success of computational mathematical optimization over
the last decades has been driven more by insights into mathematical
structures than by the advance of computing technology. In this vein,
we address applications, where nonconvexity in the model and
uncertainty in the data pose principal difficulties.
The first part of the thesis deals with non-convex quadratic programs.
Branch&Bound methods for this problem class depend on tight
relaxations. We contribute in several ways: First, we establish a new
way to handle missing linearization variables in the well-known
Reformulation-Linearization-Technique (RLT). This is implemented
into the commercial software CPLEX. Second, we study the optimization
of a quadratic objective over the standard simplex or a knapsack
constraint. These basic structures appear as part of many complex
models. Exploiting connections to the maximum clique problem and RLT,
we derive new valid inequalities. Using exact and heuristic separation
methods, we demonstrate the impact of the new inequalities on the
relaxation and the global optimization of these problems. Third, we
strengthen the state-of-the-art relaxation for the pooling problem, a
well-known non-convex quadratic problem, which is, for example,
relevant in the petrochemical industry. We propose a novel relaxation
that captures the essential non-convex structure of the problem but is
small enough for an in-depth study. We provide a complete inner
description in terms of the extreme points as well as an outer
description in terms of inequalities defining its convex hull (which
is not a polyhedron). We show that the resulting valid convex
inequalities significantly strengthen the standard relaxation of the
pooling problem.
The second part of this thesis focuses on a common challenge in real
world applications, namely, the uncertainty entailed in the input
data.
We study the extension of a gas transport network, e.g., from our
project partner Open Grid Europe GmbH.
For a single scenario this maps to a challenging non-convex MINLP.
As the future transport patterns are highly uncertain, we propose a
robust model to best prepare the network operator for an array of
scenarios.
We develop a custom decomposition approach that makes use of the
hierarchical structure of network extensions and the loose coupling
between the scenarios.
The algorithm used the single-scenario problem as black-box subproblem
allowing the generalization of our approach to problems with the same
structure.
The scenario-expanded version of this problem is out of reach for
today's general-purpose MINLP solvers.
Yet our approach provides primal and dual bounds for instances with up
to 256 scenarios and solves many of them to optimality.
Extensive computational studies show the impact of our work.

The amazing success of computational mathematical optimization over the last decades has been driven more by insights into mathematical structures than by the advance of computing technology. In this vein, we address applications, where nonconvexity in the model poses principal difficulties.
This paper summarizes the dissertation of Jonas Schweiger for the occasion of the GOR dissertation award 2018. We focus on the work on non-convex quadratic programs and show how problem specific structure can be used to obtain tight relaxations and speed up Branch&Bound methods. Both a classic general QP and the Pooling Problem as an important practical application serve as showcases.