## 90B20 Traffic problems

### Refine

#### Document Type

- ZIB-Report (7)
- Doctoral Thesis (1)

#### Language

- English (8) (remove)

#### Keywords

- combinatorial optimization (3)
- integer programming (3)
- line planning (3)
- transfers (3)
- demand function (2)
- discrete choice model (2)
- fare planning (2)
- Ganzzahlige Programmierung (1)
- Kombinatorische Optimierung (1)
- Linienplanung (1)

#### Institute

- Mathematics of Transportation and Logistics (8) (remove)

We consider multi-commodity flow problems in which capacities are installed on paths. In this setting, it is often important to distinguish between flows on direct connection routes, using single paths, and flows that include path switching. We derive a feasibility condition for path capacities supporting such direct connection flows similar to the feasibility condition for arc capacities in ordinary multi-commodity flows.
The concept allows to solve large-scale real-world line planning problems in public transport including a novel passenger routing model that favors direct connections over connections with transfers.

The integrated line planning and passenger routing problem is an important planning problem in service design of public transport. A major challenge is the treatment of transfers. A main property of a line system is its connectivity.
In this paper we show that analysing the connecvitiy aspect of a line plan gives a new idea to handle the transfer aspect of the line planning problem.

This thesis introduces the Steiner connectivity problem. It is a generalization of the well
known Steiner tree problem. Given a graph G = (V, E) and a subset T ⊆ V of the nodes,
the Steiner tree problem consists in finding a cost minimal set of edges connecting all
nodes in T . The Steiner connectivity problem chooses, instead of edges, from a given set
of paths a subset to connect all nodes in T . We show in the first part of this thesis that
main results about complexity, approximation, integer programming formulations, and
polyhedra can be generalized from the Steiner tree problem to the Steiner connectivity
problem.
An example for a straightforward generalization are the Steiner partition inequalities, a
fundamental class of facet defining inequalities for the Steiner tree problem. They can be
defined for the Steiner connectivity problem in an analogous way as for the Steiner tree
problem. An example for a generalization that needs more effort is the definition of a
directed cut formulation and the proof that this dominates the canonical undirected cut
formulation enriched by all Steiner partition inequalities. For the Steiner connectivity
problem this directed cut formulation leads to extended formulations, a concept that is
not necessary for the Steiner tree problem. There are also major differences between
both problems. For instance, the case T = V for the Steiner connectivity problem is
equivalent to a set covering problem and, hence, not a polynomial solvable case as in the
Steiner tree problem.
The Steiner connectivity problem is not only an interesting generalization of the Steiner
tree problem but also the underlying connectivity problem in line planning with inte-
grated passenger routing. The integrated line planning and passenger routing problem
is an important planning problem in service design of public transport and the topic of
the second part. Given is the infrastructure network of a public transport system where
the edges correspond to streets and tracks and the nodes correspond to stations/stops
of lines. The task is to find paths in the infrastructure network for lines and passengers
such that the capacities of the lines suffice to transport all passengers. Existing models
in the literature that integrate a passenger routing in line planning either treat transfers
in a rudimentary way and, hence, neglect an important aspect for the choice of the pas-
senger routes, or they treat transfers in a too comprehensive way and cannot be solved
for large scale real world problems. We propose a new model that focuses on direct
connections. The attractiveness of transfer free connections is increased by introducing a transfer penalty for each non-direct connection. In this way, a passenger routing is
computed that favors direct connections.
For the computation of this model we also implemented algorithms influenced by the
results for the Steiner connectivity problem. We can compute with our model good
solutions that minimize a weighted sum of line operating costs and passengers travel
times. These solutions improve the solutions of an existing approach, that does not
consider direct connections, by up to 17%. In contrast to a comprehensive approach,
that considers every transfer and for which we could not even solve the root LP within
10 hours for large instances, the solutions of the new model, computed in the same time,
are close to optimality (<1%) or even optimal for real world instances. In a project with
the Verkehr in Potsdam GmbH to compute the line plan for 2010 we showed that our
approach is applicable in practice and can be used to solve real world problems.

The treatment of transfers is a major challenge in line planning. Existing models either route passengers and lines sequentially, and hence disregard essential degrees of freedom, or they are of
extremely large scale, and seem to be computationally intractable. We propose a novel direct connection approach that allows an integrated optimization of line and passenger routing, including accurate estimates of the number of direct travelers, for large-scale real-world instances.

We propose a novel integer programming approach to transfer minimization for line planning problems in public transit. The idea is to incorporate penalties for transfers that are induced by “connection capacities” into the construction of the passenger paths. We show that such penalties can be dealt with by a combination of shortest and constrained shortest path algorithms such that the pricing problem for passenger paths can be solved efficiently. Connection capacity penalties (under)estimate the true transfer times. This error is, however, not a problem in practice. We show in a computational comparison with two standard models on a real-world scenario that our approach can be used to minimize passenger travel and transfer times for large-scale line planning problems with accurate results.

The optimization of fare systems in public transit allows to pursue objectives such as the maximization of demand, revenue, profit, or social welfare. We propose a non-linear optimization approach to fare planning that is based on a detailed discrete choice model of user behavior. The approach allows to analyze different fare structures, optimization objectives, and operational scenarios involving, e.g., subsidies. We use the resulting models to compute optimized fare systems for the city of Potsdam, Germany.

The \emph{fare planning problem} for public transport is to design a system of fares that maximize the revenue. We introduce a nonlinear optimization model to approach this problem. It is based on a d iscrete choice logit model that expresses demand as a function of the fares. We illustrate our approach by computing and comparing two different fare systems for the intercity network of the Netherlands.

In this paper we introduce the fare planning problem for public transport which consists in designing a system of fares maximizing revenue. We propose a new simple general model for this problem. It i s based on a demand function and constraints for the different fares. The constraints define the structure of the fare system, e.g., distance dependent fares or zone fares. We discuss a simple example with a quadratic demand function and distance dependent fares. Then we introduce a more realistic discrete choice model in which passengers choose between different alternatives depending on the numb er of trips per month. We demonstrate the examples by computational experiments.