## 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING

### Refine

#### Year of publication

- 2017 (18) (remove)

#### Document Type

- ZIB-Report (15)
- Doctoral Thesis (2)
- Master's Thesis (1)

#### Keywords

- Algorithm Analysis (1)
- Depot Planning (1)
- Linear Programming (1)
- Markov State Models (1)
- Mixed Integer Programming (1)
- Mixed-Integer Programming (1)
- NESS (1)
- Non-reversible Markov Processes (1)
- PIPS-SBB, UG, Parallel Branch and Bound (1)
- Parallelization, Branch-and-bound, Mixed Integer Programming, UG, ParaSCIP, FiberSCIP, ParaXpress, FiberXpress, SCIP-Jack (1)

We show how to optimize rolling stock rotations that are required for the operation of a passenger timetable. The underlying mathematical ptimization problem is called rolling stock rotation problem (RSRP) and the leitmotiv of the thesis is RotOR, i.e., a highly integrated optimization algorithm for the RSRP. RotOR is used by DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for the European high-speed network. In this application, RSRPs have to be solved which (A) require many different aspects to be simultaneously considered, (B) are typically of large scale, and (C) include constraints that have a difficult combinatorial structure. This thesis suggests answers to these issues via the following concepts.
(A) The main model, which RotOR uses, relies on a hypergraph. The hypergraph provides an easy way to model manifold industrial railway requirements in great detail. This includes well known vehicle composition requirements as well as relatively unexplored regularity stipulations. At the same time, the hypergraph directly leads to a mixed-integer programming (MIP) model for the RSRP.
(B) The main algorithmic ingredient to solve industrial instances of the RSRP is a coarse-to-fine (C2F) column generation procedure. In this approach, the hypergraph is layered into coarse and fine layers that distinguish different levels of detail of the RSRP. The coarse layers are algorithmically utilized while pricing fine columns until proven optimality. Initially, the C2F approach is presented in terms of pure linear programming in order to provide an interface for other applications.
(C) Rolling stock rotations have to comply to resource constraints in order to ensure, e.g., enough maintenance inspections along the rotations. These constraints are computationally hard, but are well known in the literature on the vehicle routing problem (VRP). We define an interface problem in order to bridge between the RSRP and the VRP and derive a straightforward algorithmic concept, namely regional search (RS), from their common features and, moreover, differences. Our RS algorithms show promising results for classical VRPs and RSRPs.
In the first part of the thesis we present these concepts, which encompass its main mathematical contribution. The second part explains all modeling and solving components of RotOR that turn out to be essential in its industrial application. The thesis concludes with a solution to a complex re-optimization RSRP that RotOR has computed successfully for DBF. In this application all ICE vehicles of the ICE-W fleets of DBF had to be redirected past a construction site on a high-speed line in the heart of Germany.

Frankl’s (union-closed sets) conjecture states that for any nonempty finite union-closed (UC) family of distinct sets there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine
whether a given UC family ensures Frankl’s conjecture holds for all UC families which contain it. The weight systems are nontrivial to identify for a given UC family, and methods to determine such weight systems have led to several other open questions and conjectures regarding structures in UC families.
We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem using computational integer programming coupled with redundant verification routines that ensure correctness. We find over one hundred previously unknown families of sets which ensure Frankl’s conjecture holds for all families that contain any of them. This improves significantly on all previous results of the kind.
Our framework allows us to answer several open questions and conjectures regarding structural properties of UC families, including proving the 3-sets conjecture of Morris from 2006 which characterizes the minimum number of 3-sets that ensure Frankl’s conjecture holds for all families that contain them. Furthermore, our method provides a general algorithmic road-map for improving other known results and uncovering structures in UC families.

The topic of this thesis is the examination of an optimization model
which stems from the clustering process of non-reversible markov processes.
We introduce the cycle clustering problem und formulate it as a mixed
integer program (MIP).
We prove that this problem is N P-hard and discuss polytopal aspects
such as facets and dimension. The focus of this thesis is the development of
solving methods for this clustering problem. We develop problem specific
primal heuristics, as well as separation methods and an approximation
algorithm. These techniques are implemented in practice as an application
for the MIP solver SCIP.
Our computational experiments show that these solving methods result
in an average speedup of ×4 compared to generic solvers and that our
application is able to solve more instances to optimality within the given
time limit of one hour.

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.

Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.

The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short paper, we present a new approach which uses conflict information to improve the primal bound during a MIP solve. To derive new improving primal solutions we use a conflict driven diving heuristic called conflict diving that uses the information obtained by conflict analysis. Conflict diving pursues a twofold strategy. By using conflict information the new diving approach is guided into parts of the search space that are usually not explored by other diving heuristics. At the same time, conflict diving has a fail-fast-strategy to reduce the time spent if it cannot find a new primal solution. As a byproduct, additional valid conflict constraints can be derived, from which a MIP solver can gain benefit to improve the dual bound as well. To show the added-value of conflict diving within a MIP solver, conflict diving has been implemented within the non-commercial MIP solver SCIP. Experiments are carried out on general MIP instances from standard public test sets, like MIPLIB2010 or Cor@l.

Compressor machines are crucial elements in a gas transmission network, required to compensate for the pressure loss caused by friction in the pipes. Modelling all physical and technical details of a compressor machine involves a large amount of nonlinearity, which makes it hard to use such models in the optimization of large-scale gas networks. In this paper, we are going to describe a modelling approach for the operating range of a compressor machine, starting from a physical reference model and resulting in a polyhedral representation in the 3D space of mass flow throughput as well as in- and outlet pressure.

Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG.

PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch & Bound (B&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.

Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems
(2017)

This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches.