## 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING

Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound.
Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.

In this paper, we compare several approaches for the problem of gas network expansions using loops, that is, to build new pipelines in parallel to existing ones. We present different model formulations for the problem of continuous loop expansions as well as discrete loop expansions. We then analyze problem properties, such as the structure and convexity of the underlying feasible regions. The paper concludes with a computational study comparing the continuous and the discrete formulations.

In the context of gas transmission in decoupled entry-exit systems, many approaches to determine the network capacity are based on the evaluation of realistic and severe transport situations. In this paper, we review the Reference Point Method, which is an algorithm used in practice to generate a set of scenarios using the so-called transport moment as a measure for severity. We introduce a new algorithm for finding severe transport situations that considers an actual routing of the flow through the network and is designed to handle issues arising from cyclic structures in a more dynamical manner. Further, in order to better approximate the physics of gas, an alternative, potential based flow formulation is proposed. The report concludes with a case study based on data from the benchmark library GasLib.

A railway operator creates (rolling stock) rotations in order to have a precise master plan for the
operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply
traverses a set of operational days while covering trips of the timetable. As it is well known,
the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging
and still a topical research subject. Nevertheless, we study a completely different but strongly
related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce
a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In
our industrial application at DB Fernverkehr AG, the handout is exactly as important as the
rotation itself. Moreover, it turns out that also other European railway operators use exactly the
same methodology (but not terminology). Since a rotation can have many handouts of different
quality, we show how to compute optimal ones through an integer program (IP) by standard
software. In addition, a construction as well as an improvement heuristic are presented. Our
computational results show that the heuristics are a very reliable standalone approach to quickly
find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a
computational comparison to the IP approach.

Portfolio parallelization is an approach that runs several solver instances in parallel and terminates when one of them succeeds in solving the problem. Despite it's simplicity portfolio parallelization has been shown to perform well for modern mixed-integer programming (MIP) and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be a simple technique in modern MIP and SAT solvers that effectively finds additional domain reductions after a variables domain has been reduced. This paper investigates the impact of distributed domain propagation in modern MIP solvers that employ portfolio parallelization. Computational experiments were conducted for two implementations of this parallelization approach. While both share global variable bounds and solutions they communicate differently. In one implementation the communication is performed only at designated points in the solving process and in the other it is performed completely asynchronously. Computational experiments show a positive performance impact of communicating global variable bounds and provide valuable insights in communication strategies for parallel solvers.

SCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP.

We introduce the shortest path problem with crossing costs (SPPCC), a shortest path problem in a directed graph, in which the objective function is the sum of arc weights and crossing costs. The former are independently paid for each arc used by the path, the latter need to be paid every time the path intersects certain sets of arcs, which we call regions.
The SPPCC generalizes not only the classical shortest path problem but also variants such as the resource constrained shortest path problem and the minimum label path problem. We use the SPPCC to model the flight trajectory optimization problem with overflight costs.
In this paper, we provide a comprehensive analysis of the problem. In particular,
we identify efficient exact and approximation algorithms for the cases that are most relevant in practice.

The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.

Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MILP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format, illustrating its capabilities and structure through examples. The certificate format is designed with simplicity in mind and is composed of a list of statements that can be sequentially verified using a limited number of simple yet powerful inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of mixed-integer linear programming instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates.

We investigate a graph theoretical problem arising in the automatic billing of a network toll. Given a network and a family of user paths, we study the graph segmentation problem (GSP) to cover parts of the user paths by a set of disjoint segments. The GSP is shown to be NP-hard but for special cases it can be solved in polynomial time. We also show that the marginal utility of a segment is bounded. Computational results for real-world instances show that in practice the problem is more amenable than the theoretic bounds suggest.