## 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (117)
- Master's Thesis (4)
- Doctoral Thesis (3)
- Article (1)
- Bachelor's Thesis (1)

#### Keywords

The operation of a railway network as large as Deutsche Bahn's Intercity Express (ICE) hinges on a number of factors, such as the availability of personnel and the assignment of physical vehicles to a timetable schedule, a problem known as the rolling stock rotation problem (RSRP). In this paper, we consider the problem of creating an alternative timetable in the case that there is a long-term disruption, such as a strike, and the effects that this alternative timetable has on the resulting vehicle rotation plan. We define a priority measure via the Analytic Hierarchy Process (AHP) to determine the importance of each trip in the timetable and therefore which trips to cancel or retain. We then compare our results with those of a limited timetable manually designed by Deutsche Bahn (DB). We find that while our timetable results in a more expensive rotation plan, its flexibility lends itself to a number of simple improvements. Furthermore, our priority measure has the potential to be integrated into the rolling stock rotation optimization process, in particular, the Rotation Optimizer for Railways (ROTOR) software, via the cost function. Ultimately, our method provides the foundation for an automated way of creating a new timetable quickly, and potentially in conjunction with a new rotation plan, in the case of a limited scenario.

The planning of a communication network is inevitably depending on the quality of both the planning tool and the demand forecast used. In this article, we show exemplarily how the emerging area of Robust Optimization can advance the network planning by a more accurate mathematical description of the demand uncertainty. After a general introduction of the concept and its application to a basic network design problem, we present two applications: multi-layer and mixed-line-rate network design. We conclude with a discussion of extensions of the robustness concept to increase the accuracy of handling uncertainties.

All feasible flows in potential-driven networks
induce an orientation on the undirected graph underlying the network.
Clearly, these orientations must satisfy two conditions: they are acyclic and there are no "dead ends" in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and an outgoing flow. In this paper we will call orientations that satisfy these conditions acyclic source-transhipment-sink orientations (ASTS-orientation) and study their structure. In particular, we characterize graphs that allow for such an orientation, describe a way to enumerate all possible ASTS-orientations of a given graph, present an algorithm to simplify and decompose a graph before such an enumeration and shed light on the role of zero flows in the context of ASTS-orientations.

Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation.
In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics.

Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound.
Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.

Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature complex non-linear cost functions. An important case are costs for crossing regions, such as countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to address such situations; it generalizes the classical shortest path problem and variants such as the resource constrained shortest path problem and the minimum label path problem. Motivated by an application in flight trajectory optimization with overflight costs, we focus on the case in which the crossing costs of a region depend only on the nodes used to enter or exit it. We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the SPPCC to a standard shortest path problem. We evaluate all algorithms’ performance on real-world flight trajectory optimization instances, obtaining very good à posteriori error bounds.

We introduce the shortest path problem with crossing costs (SPPCC), a shortest path problem in a directed graph, in which the objective function is the sum of arc weights and crossing costs. The former are independently paid for each arc used by the path, the latter need to be paid every time the path intersects certain sets of arcs, which we call regions.
The SPPCC generalizes not only the classical shortest path problem but also variants such as the resource constrained shortest path problem and the minimum label path problem. We use the SPPCC to model the flight trajectory optimization problem with overflight costs.
In this paper, we provide a comprehensive analysis of the problem. In particular,
we identify efficient exact and approximation algorithms for the cases that are most relevant in practice.

A common technique in the solution of large or complex optimization problems is the use of micro-macro transformations. In this paper, we carry out a theoretical analysis of such transformations for the track allocation problem in railway networks. We prove that the cumulative rounding technique of Schlechte et al. satisfies two of three natural optimality criteria and that this performance cannot be improved. We also show that under extreme circumstances, this technique can perform inconvieniently by underestimating the global optimal value.

The rapid technological evolution of telecommunication networks demands service providers to regularly update their technology, with the aim of remaining competitive in the marketplace. However, upgrading the technology in a network is not a trivial task. New hardware components need to be installed in the network and during the installation network connectivity may be temporarily compromised. The Wavelength Division Multiplexing (WDM) technology, whose upgrade is considered in here, shares fiber links among several optical connections and tearing down a single link may disrupt several optical connections at once. When the upgrades involve large parts of a network, typically not all links can be upgraded in parallel, which may lead to an unavoidable longer disruption of some connections. A bad scheduling of the overall endeavor, however, can dramatically increase the disconnection time of parts of the networks, causing extended service disruption. In this contribution, we study the problem of finding a schedule of the fiber link upgrades that minimizes the total service disruption time. To the best of our knowledge, this problem has not yet been formalized and investigated. The aim of our work is to close this gap by presenting a mathematical optimization model for the problem and an innovative solution algorithm that tackles the intrinsic difficulties of the problem. Computational experience on realistic instances completes our study. Our original investigations have been driven by real needs of DFN, operator of the German National Research and Education Network and our partner in the BMBF research project ROBUKOM (http://www.robukom.de/).

Bus rapid transit systems in developing and newly
industrialized countries often consist of a trunk with a path
topology. On this trunk, several overlapping lines are operated
which provide direct connections. The demand varies heavily over the
day, with morning and afternoon peaks typically in reverse
directions. We propose an integer programming
model for this problem, derive a structural property of line plans
in the static (or single period) ``unimodal demand'' case, and
consider approaches to the solution of the multi-period version that
rely on clustering the demand into peak and off-peak service
periods. An application to the Metrobüs system of Istanbul is
discussed.