## 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING

The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the
timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.

A railway operator creates (rolling stock) rotations in order to have a precise master plan for the
operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply
traverses a set of operational days while covering trips of the timetable. As it is well known,
the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging
and still a topical research subject. Nevertheless, we study a completely different but strongly
related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce
a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In
our industrial application at DB Fernverkehr AG, the handout is exactly as important as the
rotation itself. Moreover, it turns out that also other European railway operators use exactly the
same methodology (but not terminology). Since a rotation can have many handouts of different
quality, we show how to compute optimal ones through an integer program (IP) by standard
software. In addition, a construction as well as an improvement heuristic are presented. Our
computational results show that the heuristics are a very reliable standalone approach to quickly
find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a
computational comparison to the IP approach.

We investigate a graph theoretical problem arising in the automatic billing of a network toll. Given a network and a family of user paths, we study the graph segmentation problem (GSP) to cover parts of the user paths by a set of disjoint segments. The GSP is shown to be NP-hard but for special cases it can be solved in polynomial time. We also show that the marginal utility of a segment is bounded. Computational results for real-world instances show that in practice the problem is more amenable than the theoretic bounds suggest.

Planning and operating railway transportation systems is an extremely
hard task due to the combinatorial complexity of the underlying discrete
optimization problems, the technical intricacies, and the immense size of
the problem instances. Because of that, however, mathematical models
and optimization techniques can result in large gains for both railway cus-
tomers and operators, e.g., in terms of cost reductions or service quality
improvements. In the last years a large and growing group of researchers
in the OR community have devoted their attention to this domain devel-
oping mathematical models and optimization approaches to tackle many
of the relevant problems in the railway planning process. However, there
is still a gap to bridge between theory and practice, with
a few notable exceptions. In this paper we address three success stories,
namely, long-term freight train routing (part I), mid-term rolling stock
rotation planning (part II), and real-time train dispatching (part III). In
each case, we describe real-life, successful implementations. We will dis-
cuss the individual problem setting, survey the optimization literature,
and focus on particular aspects addressed by the mathematical models.
We demonstrate on concrete applications how mathematical optimization
can support railway planning and operations. This gives proof that math-
ematical optimization can support the planning of rolling stock resources.
Thus, mathematical models and optimization can lead to a greater effi-
ciency of railway operations and will serve as a powerful and innovative
tool to meet recent challenges of the railway industry.

We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.

We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design
efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor
details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems.