## 82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) [See also 60H10]

### Refine

#### Document Type

- ZIB-Report (5)

#### Language

- English (5)

#### Has Fulltext

- yes (5)

#### Is part of the Bibliography

- no (5)

#### Keywords

- reaction coordinate (2)
- stochastic control (2)
- transfer operator (2)
- transition manifold (2)
- Galerkin method (1)
- Girsanov transformation (1)
- change of measure (1)
- chemical master equation (1)
- coarse graining (1)
- cumulant generating function (1)

#### Institute

The identification of meaningful reaction coordinates plays a key role in the study of complex molecular systems whose essential dynamics is characterized by rare or slow transition events. In a recent publication, the authors identified a condition under which such reaction coordinates exist - the existence of a so-called transition manifold - and proposed a numerical method for their point-wise computation that relies on short bursts of MD simulations. This article represents an extension of the method towards practical applicability in computational chemistry. It describes an alternative computational scheme that instead relies on more commonly available types of simulation data, such as single long molecular trajectories, or the push-forward of arbitrary canonically-distributed point clouds. It is based on a Galerkin approximation of the transition manifold reaction coordinates, that can be tuned to individual requirements by the choice of the Galerkin ansatz functions. Moreover, we propose a ready-to-implement variant of the new scheme, that computes data-fitted, mesh-free ansatz functions directly from the available simulation data. The efficacy of the new method is demonstrated
on a realistic peptide system.

We consider complex dynamical systems showing metastable behavior but no local
separation of fast and slow time scales. The article raises the question of whether
such systems exhibit a low-dimensional manifold supporting its effective dynamics.
For answering this question, we aim at finding nonlinear coordinates, called reaction
coordinates, such that the projection of the dynamics onto these coordinates preserves
the dominant time scales of the dynamics. We show that, based on a specific
reducibility property, the existence of good low-dimensional reaction coordinates
preserving the dominant time scales is guaranteed. Based on this theoretical framework,
we develop and test a novel numerical approach for computing good reaction
coordinates. The proposed algorithmic approach is fully local and thus not prone to
the curse of dimension with respect to the state space of the dynamics. Hence, it is
a promising method for data-based model reduction of complex dynamical systems
such as molecular dynamics.

Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest. We consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic reaction-diffusion systems that exhibit properties of metastability. The space of motion is decomposed into metastable compartments and diffusive motion is approximated by jumps between these compartments. Treating these jumps as first-order reactions, simulation of the resulting stochastic system is possible by the Gillespie method. We present the theory of Markov state models (MSM) as a theoretical foundation of this intuitive approach. By means of Markov state modeling, both the number and shape of compartments and the transition rates between them can be determined. We consider the ST-CME for two reaction-diffusion systems and compare it to more detailed models. Moreover, a rigorous formal justification of the ST-CME by Galerkin projection methods is presented.

A good deal of molecular dynamics simulations aims at predicting and quantifying rare events, such as the folding of a protein or a phase transition. Simulating rare events is often prohibitive, especially if the equations of motion are high-dimensional, as is the case in molecular dynamics. Various algorithms have been proposed for efficiently computing mean first passage times, transition rates or reaction pathways. This article surveys and discusses recent developments in the field of rare event simulation and outlines a new approach that combines ideas from optimal control and statistical mechanics. The optimal control approach described in detail resembles the use of Jarzynski's equality for free energy calculations, but with an optimized protocol that speeds up the sampling, while (theoretically) giving variance-free estimators of the rare events statistics. We illustrate the new approach with two numerical examples and discuss its relation to existing methods.

Linear response theory and optimal control for a molecular system under nonequilibrium conditions
(2013)

In this paper, we propose a straightforward generalization of linear
response theory to systems in nonequilibrium that are subject to
nonequilibrium driving. We briefly revisit the standard linear response
result for equilibrium systems, where we consider Langevin dynamics
as a special case, and then give an alternative derivation using a
change-of-measure argument that does not rely on any stationarity or
reversibility assumption. This procedure moreover easily enables us
to calculate the second order correction to the linear response formula
(which may or may not be useful in practice). Furthermore, we outline
how the novel nonequilibirum linear response formula can be used to
compute optimal controls of molecular systems for cases in which one
wants to steer the system to maximize a certain target expectation
value. We illustrate our approach with simple numerical examples.