## 80A30 Chemical kinetics [See also 76V05, 92C45, 92E20]

### Refine

#### Document Type

- ZIB-Report (3)

#### Language

- English (3)

#### Has Fulltext

- yes (3)

#### Is part of the Bibliography

- no (3)

#### Keywords

- alternating linear scheme (1)
- clustering (1)
- eigenvectors (1)
- heterogeneous catalysis (1)
- kinetic Monte Carlo (1)
- master equation (1)
- metastable conformations (1)
- potential energy surface (1)
- tensor decompositions (1)
- tensor train format (1)

#### Institute

- ZIB Allgemein (2)
- Numerical Mathematics (1)

In multiscale models of heterogeneous catalysis, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. This usually is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO_2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

The dynamic behavior of molecules can often be described by Markov processes. From computational molecular simulations one can derive transition rates or transition probabilities between subsets of the discretized conformational space. On the basis of this dynamic information, the spatial subsets are combined into a small number of so-called metastable molecular conformations. This is done by clustering methods like the Robust Perron Cluster Analysis (PCCA+). Up to now it is an open question how this coarse graining in space can be transformed to a coarse graining of the Markov chain while preserving the essential dynamic information. In the following article we aim at a consistent coarse graining of transition probabilities or rates on the basis of metastable conformations such that important physical and mathematical relations are preserved. This approach is new because PCCA+ computes molecular conformations as linear combinations of the dominant eigenvectors of the transition matrix which does not hold for other clustering methods.

The identification of metastable conformations of molecules plays an important role in computational drug design. One main difficulty is the fact that the underlying dynamic processes take place in high dimensional spaces. Although the restriction of degrees of freedom to a few dihedral angles significantly reduces the complexity of the problem, the existing algorithms are time-consuming. They are based on the approximation of transition probabilities by an extensive sampling of states according to the Boltzmann distribution. We present a method which can identify metastable conformations without sampling the complete distribution. Our algorithm is based on local transition rates and uses only pointwise information about the potential energy surface. In order to apply the cluster algorithm PCCA+, we compute a few eigenvectors of the rate matrix by the Jacobi-Davidson method. Interpolation techniques are applied to approximate the thermodynamical weights of the clusters. The concluding example illustrates our approach for epigallocatechine, a molecule which can be described by seven dihedral angles.