74H15 Numerical approximation of solutions
Refine
Document Type
- ZIB-Report (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
The paper considers an improved variant of the contact-stabilized Newmark method by Deuflhard et al., which provides a spatiotemporal numerical integration of dynamical contact problems between viscoelastic bodies in the frame of the Signorini condition. Up no now, the question of consistency in the case of contact constraints has been discussed for time integrators in function space under the assumption of bounded total variation of the solution. Here, interest focusses on the consistency error of the Newmark scheme in physical energy norm after discretization both in time and in space. The resulting estimate for the local discretization error allows to prove global convergence of the Newmark scheme under an additional assumption on the active contact boundaries.
The paper considers the time integration of frictionless dynamical contact problems between viscoelastic bodies in the frame of the Signorini condition. Among the numerical integrators, interest focuses on the contact-stabilized Newmark method recently suggested by Deuflhard et al., which is compared to the classical Newmark method and an improved energy dissipative version due to Kane et al. In the absence of contact, any such variant is equivalent to the Störmer-Verlet scheme, which is well-known to have consistency order 2. In the presence of contact, however, the classical approach to discretization errors would not show consistency at all because of the discontinuity at the contact. Surprisingly, the question of consistency in the constrained situation has not been solved yet. The present paper fills this gap by means of a novel proof technique using specific norms based on earlier perturbation results due to the authors. The corresponding estimation of the local discretization error requires the bounded total variation of the solution. The results have consequences for the construction of an adaptive timestep control, which will be worked out subsequently in a forthcoming paper.