## 68Q25 Analysis of algorithms and problem complexity [See also 68W40]

### Refine

#### Year of publication

- 2000 (2) (remove)

#### Keywords

- Approximation Algorithms (1)
- NP-completeness (1)
- NP-hardness (1)
- Network (1)
- polynomial-time approximation algorithms (1)
- stacker-crane problem (1)
- vehicle (1)

In the Capacitated Dial-a-Ride Problem (CDARP) we are given a transportation network and a finite set of transportation jobs. Each job specifies the source and target location which are both part of the network. A server which can carry at most $C$~objects at a time can move on the transportation network in order to process the transportation requests. The problem CDARP consists of finding a shortest transportation for the jobs starting and ending at a designated start location. In this paper we are concerned with the restriction of CDARP to graphs which are simple paths. This setting arises for instance when modelling applications in elevator transportation systems. It is known that even for this restricted class of graphs CDARP is NP-hard to solve. We provide a polynomial time approximation algorithm that finds a transportion of length at most thrice the length of the optimal transportation.

Several practical instances of network design problems require the network to satisfy multiple constraints. In this paper, we address the \emph{Budget Constrained Connected Median Problem}: We are given an undirected graph $G = (V,E)$ with two different edge-weight functions $c$ (modeling the construction or communication cost) and $d$ (modeling the service distance), and a bound~$B$ on the total service distance. The goal is to find a subtree~$T$ of $G$ with minimum $c$-cost $c(T)$ subject to the constraint that the sum of the service distances of all the remaining nodes $v \in V\setminus T$ to their closest neighbor in~$T$ does not exceed the specified budget~$B$. This problem has applications in optical network design and the efficient maintenance of distributed databases. We formulate this problem as bicriteria network design problem, and present bicriteria approximation algorithms. We also prove lower bounds on the approximability of the problem that demonstrate that our performance ratios are close to best possible