## 68Q25 Analysis of algorithms and problem complexity [See also 68W40]

In this paper, we discuss the relation of unsplittable shortest path routing (USPR) to other routing schemes and study the approximability of three USPR network planning problems. Given a digraph $D=(V,A)$ and a set $K$ of directed commodities, an USPR is a set of flow paths $\Phi_{(s,t)}$, $(s,t)\in K$, such that there exists a metric $\lambda=(\lambda_a)\in \mathbb{Z}^A_+$ with respect to which each $\Phi_{(s,t)}$ is the unique shortest $(s,t)$-path. In the \textsc{Min-Con-USPR} problem, we seek for an USPR that minimizes the maximum congestion over all arcs. We show that this problem is hard to approximate within a factor of $\mathcal{O}(|V|^{1-\epsilon})$, but easily approximable within min$(|A|,|K|)$ in general and within $\mathcal{O}(1)$ if the underlying graph is an undirected cycle or a bidirected ring. We also construct examples where the minimum congestion that can be obtained by USPR is a factor of $\Omega(|V|^2)$ larger than that achievable by unsplittable flow routing or by shortest multi-path routing, and a factor of $\Omega(|V|)$ larger than by unsplittable source-invariant routing. In the CAP-USPR problem, we seek for a minimum cost installation of integer arc capacities that admit an USPR of the given commodities. We prove that this problem is $\mathcal{NP}$-hard to approximate within $2-\epsilon$ (even in the undirected case), and we devise approximation algorithms for various special cases. The fixed charge network design problem \textsc{Cap-USPR}, where the task is to find a minimum cost subgraph of $D$ whose fixed arc capacities admit an USPR of the commodities, is shown to be $\mathcal{NPO}$-complete. All three problems are of great practical interest in the planning of telecommunication networks that are based on shortest path routing protocols. Our results indicate that they are harder than the corresponding unsplittable flow or shortest multi-path routing problems.

Let $G=(V,E)$ be a simple graph and $s$ and $t$ be two distinct vertices of $G$. A path in $G$ is called $\ell$-bounded for some $\ell\in\mathbb{N}$, if it does not contain more than $\ell$ edges. We study the computational complexity of approximating the optimum value for two optimization problems of finding sets of vertex-disjoint $\ell$-bounded $s,t$-paths in $G$. First, we show that computing the maximum number of vertex-disjoint $\ell$-bounded $s,t$-paths is $\mathcal{AP\kern-1pt X}$--complete for any fixed length bound $\ell\geq 5$. Second, for a given number $k\in\mathbb{N}$, $1\leq k \leq |V|-1$, and non-negative weights on the edges of $G$, the problem of finding $k$ vertex-disjoint $\ell$-bounded $s,t$-paths with minimal total weight is proven to be $\mathcal{NPO}$--complete for any length bound $\ell\geq 5$. Furthermore, we show that, even if $G$ is complete, it is $\mathcal{NP}$--complete to approximate the optimal solution value of this problem within a factor of $2^{\langle\phi\rangle^\epsilon}$ for any constant $0<\epsilon<1$, where $\langle\phi\rangle$ denotes the encoding size of the given problem instance $\phi$. We prove that these results are tight in the sense that for lengths $\ell\leq 4$ both problems are polynomially solvable, assuming that the weights satisfy a generalized triangle inequality in the weighted problem. All results presented also hold for directed and non-simple graphs. For the analogous problems where the path length restriction is replaced by the condition that all paths must have length equal to $\ell$ or where vertex-disjointness is replaced by edge-disjointness we obtain similar results.