## 68Q25 Analysis of algorithms and problem complexity [See also 68W40]

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (16)
- Habilitation (1)
- Master's Thesis (1)

#### Keywords

#### Institute

- ZIB Allgemein (15)
- Mathematical Optimization (4)

The parameter contraction degeneracy -- the maximum minimum degree over all minors of a graph -- is a treewidth lower bound and was first defined in (Bodlaender, Koster, Wolle, 2004). In experiments it was shown that this lower bound improves upon other treewidth lower bounds. In this note, we examine some relationships between the contraction degeneracy and connected components of a graph, block s of a graph and the genus of a graph. We also look at chordal graphs, and we study an upper bound on the contraction degeneracy and another lower bound for treewidth. A data structure that can be used for algorithms computing the degeneracy and similar parameters, is also described.

This survey concerns optimization problems arising in the design of survivable communication networks. It turns out that such problems can be modeled in a natural way as non-compact linear programming formulations based on multicommodity flow network models. These non-compact formulations involve an exponential number of path flow variables, and therefore require column generation to be solved to optimality. We consider several path-based survivability mechanisms and present results, both known and new, on the complexity of the corresponding column generation problems (called the pricing problems). We discuss results for the case of the single link (or node) failures scenarios, and extend the considerations to multiple link failures. Further, we classify the design problems corresponding to different survivability mechanisms according to the structure of their pricing problem. Finally, we show that almost all encountered pricing problems are hard to solve for scenarios admitting multiple failures.

In the Capacitated Dial-a-Ride Problem (CDARP) we are given a transportation network and a finite set of transportation jobs. Each job specifies the source and target location which are both part of the network. A server which can carry at most $C$~objects at a time can move on the transportation network in order to process the transportation requests. The problem CDARP consists of finding a shortest transportation for the jobs starting and ending at a designated start location. In this paper we are concerned with the restriction of CDARP to graphs which are simple paths. This setting arises for instance when modelling applications in elevator transportation systems. It is known that even for this restricted class of graphs CDARP is NP-hard to solve. We provide a polynomial time approximation algorithm that finds a transportion of length at most thrice the length of the optimal transportation.

In the problem of \emph{Online Call Admission in Optical Networks}, briefly called \textsc{oca}, we are given a graph $G=(V,E)$ together with a set of wavelengths~$W$ and a finite sequence $\sigma=r_1,r_2,\dots$ of calls which arrive in an online fashion. Each call~$r_j$ specifies a pair of nodes to be connected and an integral demand indicating the number of required lightpaths. A lightpath is a path in~$G$ together with a wavelength~$\lambda \in W$. Upon arrival of a call, an online algorithm must decide immediately and irrevocably whether to accept or to reject the call without any knowledge of calls which appear later in the sequence. If the call is accepted, the algorithm must provide the requested number of lightpaths to connect the specified nodes. The essential restriction is the wavelength conflict constraint: each wavelength is available only once per edge, which implies that two lightpaths sharing an edge must have different wavelengths. Each accepted call contributes a benefit equal to its demand to the overall profit. The objective in \textsc{oca} is to maximize the overall profit. Competitive algorithms for \textsc{oca} have been known for the special case where every call requests just a single lightpath. In this paper we present the first competitive online algorithms for the general case of larger demands.

An instance of the \emph{maximum coverage} problem is given by a set of weighted ground elements and a cost weighted family of subsets of the ground element set. The goal is to select a subfamily of total cost of at most that of a given budget maximizing the weight of the covered elements. We formulate the problem on graphs: In this situation the set of ground elements is specified by the nodes of a graph, while the family of covering sets is restricted to connected subgraphs. We show that on general graphs the problem is polynomial time solvable if restricted to sets of size at most~$2$, but becomes NP-hard if sets of size~$3$ are permitted. On trees, we prove polynomial time solvability if each node appears in a fixed number of sets. In contrast, if vertices are allowed to appear an unbounded number of times, the problem is NP-hard even on stars. We finally give polynomial time algorithms for special cases where the subgraphs form paths and the host graph is a line, a cycle or a star.

Traditional optimization techniques assume, in general, knowledge of all data of a problem instance. There are many cases in practice, however, where decisions have to be made before complete information about the data is available. In fact, it may be necessary to produce a part of the problem solution as soon as a new piece of information becomes known. This is called an \emph{online situation}, and an algorithm is termed \emph{online}, if it makes a decision (computes a partial solution) whenever a new piece of data requests an action. \emph{Competitive analysis} has become a standard yardstick to measure the quality of online algorithms. One compares the solution produced by an online algorithm to that of an optimal (clairvoyant) offline algorithm. An online algorithm is called $c$-competitive if on every input the solution it produces has cost'' at most $c$~times that of the optimal offline algorithm. This situation can be imagined as a game between an online player and a malicious adversary. Although competitive analysis is a worst-case analysis and henceforth pessimistic, it often allows important insights into the problem structure. One can obtain an idea about what kind of strategies are promising for real-world systems and why. On the other hand there are also cases where the offline adversary is simply too powerful and allows only trivial competitiveness results. This phenomenon is called hitting the triviality barrier''. We investigate several online problems by means of competitive analysis. We also introduce new concepts to overcome the weaknesses of the standard approach and to go beyond the triviality barrier.

Every lower bound for treewidth can be extended by taking the maximum of the lower bound over all subgraphs or minors. This extension is shown to be a very vital idea for improving treewidth lower bounds. In this paper, we investigate a total of nine graph parameters, providing lower bounds for treewidth. The parameters have in common that they all are the vertex-degree of some vertex in a subgra ph or minor of the input graph. We show relations between these graph parameters and study their computational complexity. To allow a practical comparison of the bounds, we developed heuristic algorithms for those parameters that are NP-hard to compute. Computational experiments show that combining the treewidth lower bounds with minors can considerably improve the lower bounds.

Several practical instances of network design problems require the network to satisfy multiple constraints. In this paper, we address the \emph{Budget Constrained Connected Median Problem}: We are given an undirected graph $G = (V,E)$ with two different edge-weight functions $c$ (modeling the construction or communication cost) and $d$ (modeling the service distance), and a bound~$B$ on the total service distance. The goal is to find a subtree~$T$ of $G$ with minimum $c$-cost $c(T)$ subject to the constraint that the sum of the service distances of all the remaining nodes $v \in V\setminus T$ to their closest neighbor in~$T$ does not exceed the specified budget~$B$. This problem has applications in optical network design and the efficient maintenance of distributed databases. We formulate this problem as bicriteria network design problem, and present bicriteria approximation algorithms. We also prove lower bounds on the approximability of the problem that demonstrate that our performance ratios are close to best possible

In this paper we consider a simple variant of the Online Dial-a-Ride Problem from a probabilistic point of view. To this end, we look at a probabilistic version of this online Dial-a-Ride problem and introduce a probabilistic notion of the competitive ratio which states that an algorithm performs well on the vast majority of the instances. Our main result is that under the assumption of high load a certain online algorithm is probabilistically $(1+o(1))$-competitive if the underlying graph is a tree. This result can be extended to general graphs by using well-known approximation techniques at the expense of a distortion factor~$O(\log\|V\|)$.

This thesis deals with a Dial-a-Ride problem on trees and considers both offline and online versions of this problem. We study the behavior of certain algorithms on random instances, i.e. we do probabilistic analysis. The focus is on results describing the typical behavior of the algorithms, i.e. results holding with (asymptotically) high probability. For the offline version, we present a simplified proof of a result of Coja-Oghlan, Krumke und Nierhoff. The results states that some heuristic using a minimum spanning tree to approximate a Steiner tree gives optimal results with high probability. This explains why this heuristic produces optimal solutions quite often. In the second part, probabilistic online versions of the problem are introduced. We study the online strategies REPLAN and IGNORE. Regarding the IGNORE strategy we can show that it works almost optimal under high load with high probability.