## 68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section -04 in that area)

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (33)
- Master's Thesis (3)
- Article (2)
- Bachelor's Thesis (1)

#### Keywords

- Convex Optimization (2)
- MSM (2)
- Reversible Markov Chain (2)
- ADOL-C (1)
- Adaptive Importance Sampling (1)
- Automatic differentiation (1)
- Bayesian inverse problem (1)
- Branch and Bound (1)
- Classification (1)
- Clinch number (1)

#### Institute

- Mathematical Optimization (20)
- Visual Data Analysis (8)
- Mathematics of Telecommunication (7)
- Distributed Algorithms and Supercomputing (4)
- Numerical Mathematics (4)
- Computational Molecular Design (2)
- Image Analysis in Biology and Materials Science (2)
- Mathematical Optimization Methods (2)
- Scientific Information (2)
- Visual Data Analysis in Science and Engineering (2)

Neural circuit mapping is generating datasets of 10,000s of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches.
We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types including searching neurons against transgene expression patterns. Finally we show that NBLAST is effective with data from other invertebrates and zebrafish.

This paper describes how we solved 12 previously unsolved mixed-integer program-
ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we
used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP
computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper
we describe the basic parallelization mechanism of ParaSCIP, improvements of the
dynamic load balancing and novel techniques to exploit the power of parallelization
for MIP solving. We give a detailed overview of computing times and statistics for
solving open MIPLIB instances.

Rising traffic in telecommunication networks lead to rising energy costs for the network operators. Meanwhile, increased flexibility of the networking hardware may help to realize load-adaptive operation of the networks to cut operation costs. To meet network operators’ concerns over stability, we propose to switch network configurations only a limited number of times per day. We present a method for the integrated computation of optimal switching times and network configurations that alternatingly solves mixed-integer programs and constrained shortest cycle problems in a certain graph. Similarly to the Branch & Bound Algorithm, it uses lower and upper bounds on the optimum value and allows for pivoting strategies to guide the computation and avoid the solution of irrelevant subproblems. The algorithm can act as a framework to be adapted and applied to suitable problems of different origin.

Time series classification mimics the human understanding of similarity. When it comes to larger datasets, state of the art classifiers reach their limits in terms of unreasonable training or testing times. One representative example is the 1-nearest-neighbor DTW classifier (1-NN DTW) that is commonly used as the benchmark to compare to and has several shortcomings: it has a quadratic time and it degenerates in the presence of noise. To reduce the computational complexity lower bounding techniques or recently a nearest centroid classifier have been introduced. Still, execution times to classify moderately sized datasets on a single core are in the order of hours. We present our Bag-Of-SFA-Symbols in Vector Space (BOSS VS) classifier that is robust and accurate due to invariance to noise, phase shifts, offsets, amplitudes and occlusions. We show that it is as accurate while being multiple orders of magnitude faster than state of the art classifiers. Using the BOSS VS allows for mining massive time series datasets and real-time analytics.

Many optimization problems can be modeled as Mixed Integer Programs (MIPs). In general, MIPs cannot be solved efficiently, since solving MIPs is NP-hard, see, e.g., Schrijver, 2003. Common methods for solving NP-hard problems are branch-and-bound and column generation. In the case of column generation, the original problem
becomes decomposed or re-formulated into one ore more smaller subproblems, which are easier to solve. Each of these subproblems is solved separately and recurrently, which can be interpreted as solving a sequence of optimization problems.
In this thesis, we consider a sequence of MIPs which only differ in the respective objective functions. Furthermore, we assume each of these MIPs get solved with a branch-and-bound algorithm. This thesis aims to figure out whether the solving process of a given sequence of MIPs can be accelerated by reoptimization. As reoptimization we understand starting the solving process
of a MIP of this sequence at a given frontier of a search tree corresponding to another MIP of this sequence.
At the beginning we introduce an LP-based branch-and-bound algorithm. This algorithm is inspired by the reoptimizing algorithm of Hiller, Klug, and the author of this
thesis, 2013. Since most of the state-of-the-art MIP
solvers come to decisions based on dual information, which leads to the loss of feasible solutions after changing the objective function, we present a technique to guarantee optimality despite using these information. A decision is based on a dual information if this decision is valid for at least one feasible solution, whereas a decision is based on a primal information if this decision is valid for all feasible solutions. Afterwards, we consider representing the search frontier of the tree by a set of nodes of a given size. We call this the Tree Compression Problem. Moreover, we present a criterion characterizing the similarity of two objective functions. To evaluate our approach of reoptimization we extend the well-known and well-maintained MIP solver SCIP to an LP-based branch-and-bound framework, introduce two heuristics for solving the Tree Compression Problem, and a primal heuristic which is especially fitted to column generation. Finally, we present computational experiments on several problem classes, e.g., the Vertex Coloring and k-Constrained Shortest Path. Our experiments show, that a straightforward reoptimization, i.e., without additional heuristics, provides no benefit in general. However, in combination with the techniques and methods presented in this thesis, we can accelerate the solving of a given sequence up to the factor 14. For this purpose it is essential to take the differences of the objective functions into account and to restart the reoptimization, i.e., solve the subproblem from scratch, if the objective functions are not similar enough. Finally, we discuss the possibility to parallelize the solving process of the search frontier at the beginning of each solving process.

Reversible Markov chains are the basis of many applications. However, computing transition probabilities by a finite sampling of a Markov chain can lead to truncation errors. Even if the original Markov chain is reversible, the approximated Markov chain might be non-reversible and will lose important properties, like the real valued spectrum. In this paper, we show how to find the closest reversible Markov chain to a given transition matrix. It turns out that this matrix can be computed by solving a convex minimization problem.

Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts’ opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.

We provide an overview of new theoretical results that we obtained while further investigating multiband robust optimization, a new model for robust optimization that we recently proposed to tackle uncertainty in mixed-integer linear programming. This new model extends and refines the classical Gamma-robustness model of Bertsimas and Sim and is particularly useful in the common case of arbitrary asymmetric distributions of the uncertainty. Here, we focus on uncertain 0-1 programs and we analyze their robust counterparts when the uncertainty is represented through a multiband set. Our investigations were inspired by the needs of our industrial partners in the research project ROBUKOM.

We investigate the Robust Multiperiod Network Design Problem, a generalization of the classical Capacitated Network Design Problem that additionally considers multiple design periods and provides solutions protected against traffic uncertainty.
Given the intrinsic difficulty of the problem, which proves challenging even for state-of-the art commercial solvers, we propose a hybrid primal heuristic based on the combination of ant colony optimization and an exact large neighborhood search. Computational experiments on a set of realistic instances from the SNDlib show that our heuristic can find solutions of extremely good quality with low optimality gap.