## 68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section -04 in that area)

### Refine

#### Keywords

- MINLP (1)
- MIP (1)
- MIPLIB (1)
- Mixed Integer Programming (1)
- Node merging (1)
- Parallel processing (1)
- Racing ParaSCIP (1)
- SCIP (1)
- Ubiquity Generator Framework (1)
- branch-and-bound (1)

#### Institute

- Mathematical Optimization Methods (2) (remove)

This paper describes how we solved 12 previously unsolved mixed-integer program-
ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we
used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP
computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper
we describe the basic parallelization mechanism of ParaSCIP, improvements of the
dynamic load balancing and novel techniques to exploit the power of parallelization
for MIP solving. We give a detailed overview of computing times and statistics for
solving open MIPLIB instances.

Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated.