## 65M70 Spectral, collocation and related methods

### Refine

#### Keywords

#### Institute

To solve optimization problems with parabolic PDE constraints, often methods working on the reduced objective functional are used. They are computationally expensive due to the necessity of solving both the state equation and a backward-in-time adjoint equation to evaluate the reduced gradient in each iteration of the optimization method. In this study, we investigate the use of the parallel-in-time method PFASST in the setting of PDE constrained optimization. In order to develop an efficient fully time-parallel algorithm we discuss different options for applying PFASST to adjoint gradient computation, including the possibility of doing PFASST iterations on both the state and adjoint equations simultaneously. We also explore the additional gains in efficiency from reusing information from previous optimization iterations when solving each equation. Numerical results for both a linear and a non-linear reaction-diffusion optimal control problem demonstrate the parallel speedup and efficiency of different approaches.

In several inital value problems with particularly expensive right hand side computation, there is a trade-off between accuracy and computational effort in evaluating the right hand sides. We consider inexact spectral deferred correction (SDC) methods for solving such non-stiff initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive an error model bounding the total error in terms of the right hand side evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance.

Spectral Deferred Correction methods for adaptive electro-mechanical coupling in cardiac simulation
(2014)

We investigate spectral deferred correction (SDC) methods for time stepping
and their interplay with spatio-temporal adaptivity, applied to the solution
of the cardiac electro-mechanical coupling model. This model consists
of the Monodomain equations, a reaction-diffusion system modeling the cardiac
bioelectrical activity, coupled with a quasi-static mechanical model describing
the contraction and relaxation of the cardiac muscle. The numerical
approximation of the cardiac electro-mechanical coupling is a challenging
multiphysics problem, because it exhibits very different spatial and temporal
scales. Therefore, spatio-temporal adaptivity is a promising approach
to reduce the computational complexity. SDC methods are simple iterative
methods for solving collocation systems. We exploit their flexibility for combining
them in various ways with spatio-temporal adaptivity. The accuracy
and computational complexity of the resulting methods are studied on some
numerical examples.