65M55 Multigrid methods; domain decomposition
Refine
Document Type
- ZIB-Report (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
To solve optimization problems with parabolic PDE constraints, often methods working on the reduced objective functional are used. They are computationally expensive due to the necessity of solving both the state equation and a backward-in-time adjoint equation to evaluate the reduced gradient in each iteration of the optimization method. In this study, we investigate the use of the parallel-in-time method PFASST in the setting of PDE constrained optimization. In order to develop an efficient fully time-parallel algorithm we discuss different options for applying PFASST to adjoint gradient computation, including the possibility of doing PFASST iterations on both the state and adjoint equations simultaneously. We also explore the additional gains in efficiency from reusing information from previous optimization iterations when solving each equation. Numerical results for both a linear and a non-linear reaction-diffusion optimal control problem demonstrate the parallel speedup and efficiency of different approaches.
The growing discrepancy between CPU computing power and memory bandwidth drives more and more numerical algorithms into a bandwidth-
bound regime. One example is the overlapping Schwarz smoother, a highly effective building block for iterative multigrid solution of elliptic equations with higher order finite elements. Two options of reducing the required
memory bandwidth are sparsity exploiting storage layouts and representing matrix entries with reduced precision in floating point or fixed point
format. We investigate the impact of several options on storage demand and contraction rate, both analytically in the context of subspace correction methods and numerically at an example of solid mechanics. Both perspectives agree on the favourite scheme: fixed point representation of Cholesky factors in nested dissection storage.
The paper investigates the efficient use of a linearly implicit stiff integrator for the numerical solution of density driven flow problems. Upon choosing a one-step method of extrapolation type (code LIMEX), the use of full Jacobians and reduced approximations are discussed. Numerical experiments include nonlinear density flow problems such as diffusion from a salt dome (2D), a (modified) Elder problem (3D), the saltpool benchmark (3D) and a real life salt dome problem (2D). The arising linear equations are solved using either a multigrid preconditioner from the software package UG4 or the sparse matrix solver SuperLU.
We present a time-dependent finite element model of the human knee joint of full 3D geometric complexity. Its efficient numerical simulation requires advanced numerical algorithms that have been developed just recently. Up to now, the model comprises bones, cartilage, and the major ligaments (patella and menisci are still missing). Bones (femur, tibia, and fibula) are modelled by linear elastic materials, cartilage by viscoelastic materials, ligaments by one-dimensional so-called Cosserat rods. In order to capture the dynamical contact problems correctly, we solve the full PDEs of elasticity in the presence of strict contact inequalities. For the total spatio-temporal discretization we apply a method of layers approach (first time, then space discretization). For the time discretization of the elastic and viscoelastic parts, we apply a new contact-stabilized Newmark method, while for the Cosserat rods we choose an energy-momentum method. For the space discretization, we use linear finite elements for the elastic and viscoelastic parts and novel geodesic finite elements for the Cosserat rods. The coupled system is solved by a Dirichlet-Neumann method, and the arising large algebraic systems are solved by a recent fast multigrid solver, the truncated non-smooth Newton multigrid method.
Transparent Boundary Conditions for a Wide-Angle Approximation of the One-Way Helmholtz Equation
(1999)
We present nonlocal discrete transparent boundary conditions for a fourth-order wide-angle approximation of the two-dimensional Helmholtz equation. The boundary conditions are exact in the sense that they supply the same discrete solution on a bounded interior domain as would be obtained by considering the problem on the entire unbounded domain with zero boundary conditions at infinity. The proposed algorithm results in an unconditionally stable propagation method. Numerical examples from optics illustrate the efficiency of our approach.
Transparent Boundary Conditions for Split-Step Pade Approximations of the One-Way Helmholtz Equation
(1999)
In this paper, we generalize the nonlocal discrete transparent boundary condition introduced by Schmidt and Deuflhard {[}Comp. Math. Appl. 29 (1995) 53-76{]} and Schmidt and Yevick {[}J. Comput. Phys. 134 (1997) 96-107{]} to propagation methods based on arbitrary Pad\'e approximations to the two-dimensional one-way Helmholtz equation. Our approach leads to a recursive formula for the coefficients appearing in the nonlocal condition which then yields an unconditionally stable propagation method.