## 65K05 Mathematical programming methods [See also 90Cxx]

### Refine

#### Year of publication

#### Keywords

#### Institute

- Mathematical Optimization (15)
- ZIB Allgemein (4)
- Numerical Mathematics (1)

- Recent improvements using constraint integer programming for resource allocation and scheduling (2013)
- Recently, we compared the performance of mixed-integer programming (MIP), constraint programming (CP), and constraint integer programming (CIP) to a state-of-the-art logic-based Benders manual decomposition (LBBD) for a resource allocation/scheduling problem. For a simple linear relaxation, the LBBD and CIP models deliver comparable performance with MIP also performing well. Here we show that algorithmic developments in CIP plus the use of an existing tighter relaxation substantially improve one of the CIP approaches. Furthermore, the use of the same relaxation in LBBD and MIP models significantly improves their performance. While such a result is known for LBBD, to the best of our knowledge, the other results are novel. Our experiments show that both CIP and MIP approaches are competitive with LBBD in terms of the number of problems solved to proven optimality, though MIP is about three times slower on average. Further, unlike the LBBD and CIP approaches, the MIP model is able to obtain provably high-quality solutions for all problem instances.

- Using dual presolving reductions to reformulate cumulative constraints (2012)
- Dual presolving reductions are a class of reformulation techniques that remove feasible or even optimal solutions while guaranteeing that at least one optimal solution remains, as long as the original problem was feasible. Presolving and dual reductions are important components of state-of-the-art mixed-integer linear programming solvers. In this paper, we introduce them both as unified, practical concepts in constraint programming solvers. Building on the existing idea of variable locks, we formally define and justify the use of dual information for cumulative constraints during a presolving phase of a solver. In particular, variable locks are used to decompose cumulative constraints, detect irrelevant variables, and infer variable assignments and domain reductions. Since the computational complexity of propagation algorithms typically depends on the number of variables and/or domain size, such dual reductions are a source of potential computational speed-up. Through experimental evidence on resource constrained project scheduling problems, we demonstrate that the conditions for dual reductions are present in well-known benchmark instances and that a substantial proportion of them can be solved to optimality in presolving -- without search. While we consider this result very promising, we do not observe significant change in overall run-time from the use of our novel dual reductions.

- Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling (2012)
- Despite the success of constraint programming (CP) for scheduling, the much wider penetration of mixed integer programming (MIP) technology into business applications means that many practical scheduling problems are being addressed with MIP, at least as an initial approach. Furthermore, there has been impressive and well-documented improvements in the power of generic MIP solvers over the past decade. We empirically demonstrate that on an existing set of resource allocation and scheduling problems standard MIP and CP models are now competitive with the state-of-the-art manual decomposition approach. Motivated by this result, we formulate two tightly coupled hybrid models based on constraint integer programming (CIP) and demonstrate that these models, which embody advances in CP and MIP, are able to out-perform the CP, MIP, and decomposition models. We conclude that both MIP and CIP are technologies that should be considered along with CP for solving scheduling problems.

- An approximative Criterion for the Potential of Energetic Reasoning (2011)
- Energetic reasoning is one of the most powerful propagation algorithms in cumulative scheduling. In practice, however, it is not commonly used because it has a high running time and its success highly depends on the tightness of the variable bounds. In order to speed up energetic reasoning, we provide an easy-to-check necessary condition for energetic reasoning to detect infeasibilities. We present an implementation of energetic reasoning that employs this condition and that can be parametrically adjusted to handle the trade-off between solving time and propagation overhead. Computational results on instances from the PSPLIB are provided. These results show that using this condition decreases the running time by more than a half, although more search nodes need to be explored.

- Solving Resource Allocation/Scheduling Problems with Constraint Integer Programming (2011)
- Constraint Integer Programming (CIP) is a generalization of mixed-integer programming (MIP) in the direction of constraint programming (CP) allowing the inference techniques that have traditionally been the core of \P to be integrated with the problem solving techniques that form the core of complete MIP solvers. In this paper, we investigate the application of CIP to scheduling problems that require resource and start-time assignments to satisfy resource capacities. The best current approach to such problems is logic-based Benders decomposition, a manual decomposition method. We present a CIP model and demonstrate that it achieves performance competitive to the decomposition while out-performing the standard MIP and CP formulations.

- Explanations for the Cumulative Constraint: an Experimental Study (2011)
- In cumulative scheduling, conflict analysis seems to be one of the key ingredients to solve such problems efficiently. Thereby, the computational complexity of explanation algorithms plays an important role. Even more when we are faced with a backtracking system where explanations need to be constructed on the fly. In this paper we present extensive computational results to analyze the impact of explanation algorithms for the cumulative constraint in a backward checking system. The considered explanation algorithms differ in their quality and computational complexity. We present results for the domain propagation algorithms time-tabling, edge-finding, and energetic reasoning.

- An Exact Rational Mixed-Integer Programming Solver (2011)
- We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the MIPLIB and Mittelmann collections.

- Valid Linear Programming Bounds for Exact Mixed-Integer Programming (2011)
- Fast computation of valid linear programming (LP) bounds serves as an important subroutine for solving mixed-integer programming problems exactly. We introduce a new method for computing valid LP bounds designed for this application. The algorithm corrects approximate LP dual solutions to be exactly feasible, giving a valid bound. Solutions are repaired by performing a projection and a shift to ensure all constraints are satisfied; bound computations are accelerated by reusing structural information through the branch-and-bound tree. We demonstrate this method to be widely applicable and faster than solving a sequence of exact LPs. Several variations of the algorithm are described and computationally evaluated in an exact branch-and-bound algorithm within the mixed-integer programming framework SCIP.

- ParaSCIP - a parallel extension of SCIP (2010)
- Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer.

- On the computational impact of MIQCP solver components (2011)
- We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.