49M37 Methods of nonlinear programming type [See also 90C30, 65Kxx]
Refine
Document Type
- ZIB-Report (2)
- Article (1)
Language
- English (3)
Is part of the Bibliography
- no (3)
Keywords
- discrete optimization (2)
- discrete-continuous algorithm (2)
- flight planning (2)
- free flight (2)
- optimal control (2)
- shortest path (2)
- nonconvex optimization (1)
- nonlinear elasticity (1)
- optimization in function space (1)
Institute
We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.
We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.
A cubic regularization algorithm for nonconvex optimization in function space (in preparation)
(2012)
We propose a cubic regularization algorithm that is constructed to deal with nonconvex minimization
problems in function space. It allows for a flexible choice of the regularization term and thus accounts for the fact
that in such problems one often has to deal with more than one norm. Global and local convergence results are established
in a general framework. Moreover, several variants of step computations are compared. In the context of nonlinear
elasticity it turns out the a cg method applied to an augmented Hessian is more robust than truncated cg.