## 49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX]

### Refine

#### Document Type

- ZIB-Report (8)
- Doctoral Thesis (1)

#### Keywords

- path-following (2)
- state constraints (2)
- C-stationarity (1)
- Disjunctive Programming (1)
- Maxwell equations (1)
- Nonlinear Optimization (1)
- Nonlinear dynamical systems (1)
- Optimal Control (1)
- Optimal control (1)
- PDE constrained optimization (1)

#### Institute

Optimization models often feature disjunctions of polytopes as
submodels. Such a disjunctive set is initially (at best) relaxed to
its convex hull, which is then refined by branching.
To measure the error of the convex relaxation, the (relative)
difference between the volume of the convex hull and the volume of the
disjunctive set may be used. This requires a method to compute the
volume of the disjunctive set. Naively, this can be done via
inclusion/exclusion and leveraging the existing code for the volume
of polytopes. However, this is often inefficient.
We propose a revised variant of an old algorithm by Bieri and Nef
(1983) for this purpose. The algorithm uses a sweep-plane to
incrementally calculate the volume of the disjunctive set as a
function of the offset parameter of the sweep-plane.

In the context of gas transmission in decoupled entry-exit systems, many approaches to determine the network capacity are based on the evaluation of realistic and severe transport situations. In this paper, we review the Reference Point Method, which is an algorithm used in practice to generate a set of scenarios using the so-called transport moment as a measure for severity. We introduce a new algorithm for finding severe transport situations that considers an actual routing of the flow through the network and is designed to handle issues arising from cyclic structures in a more dynamical manner. Further, in order to better approximate the physics of gas, an alternative, potential based flow formulation is proposed. The report concludes with a case study based on data from the benchmark library GasLib.

We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. We discuss preconditioning strategies for the iterative solution of the arising linear systems with projected conjugate gradient. Numerical results are shown for optimal control problems subject to a nonlinear heat equation and subject to nonlinear elastic equations arising from an implant design problem in craniofacial surgery.

We study System Dynamics models with several free parameters that can be altered by the user. We assume that the user's goal is to achieve a certain dynamic behavior of the model by varying these parameters. In order to the find best possible combination of parameter settings, several automatic parameter tuning methods are described in the literature and readily available within existing System Dynamic software packages. We give a survey on the available techniques in the market and describe their theoretical background. Some of these methods are already six decades old, and meanwhile newer and more powerful optimization methods have emerged in the mathematical literature. One major obstacle for their direct use are tabled data in System Dynamics models, which are usually interpreted as piecewise linear functions. However, modern optimization methods usually require smooth functions which are twice continuously differentiable. We overcome this problem by a smooth spline interpolation of the tabled data. We use a test set of three complex System Dynamic models from the literature, describe their individual transition into optimization problems, and demonstrate the applicability of modern optimization algorithms to these System Dynamics Optimization problems.

This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 % in 10 years

This thesis firstly presents a nonlinear extended deterministic model for the transmission dynamics of tuberculosis, based on realistic assumptions and data collected from the WHO. This model enables a comprehensive qualitative analysis of various aspects in the outbreak and control of tuberculosis in Sub-Saharan Africa countries and successfully reproduces the epidemiology of tuberculosis in Cameroon for the past (from 1994-2010). Some particular properties of the model and its solution have been presented using the comparison theorem applied to the theory of differential equations. The existence and the stability of a disease free equilibrium has been discussed using the Perron-Frobenius theorem and Metzler stable matrices.
Furthermore, we computed the basic reproduction number, i.e. the number of cases that one case generates on average over the course of its infectious period. Rigorous qualitative analysis of the model reveals that, in contrast to the model without reinfections, the full model with reinfection exhibits the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists with a stable endemic equilibrium when a certain threshold quantity, known as the basic reproduction ratio (R0), is less than unity. The global stability of the disease-free equilibrium has been discussed using the concepts of Lyapunov stability and bifurcation theory.
With the help of a sensitivity analysis using data of Cameroon, we identified the relevant parameters which play a key role for the transmission and the control of the disease. This was possible applying sophisticated numerical methods (POEM) developed at ZIB. Using advanced approaches for optimal control considering the costs for chemoprophylaxis, treatment and educational campaigns should provide a framework for designing realistic cost effective strategies with different intervention methods. The forward-backward sweep method has been used to solve the numerical optimal control problem. The numerical result of the optimal control problem reveals that combined effort in education and chemoprophylaxis may lead to a reduction of 80\% in the number of infected people in 10 years.
The mathematical and numerical approaches developed in this thesis could be similarly applied in many other Sub-Saharan countries where TB is a public health problem.

This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator.

We derive a-priori estimates on the length of the primal-dual path that results from a
Moreau-Yosida approximation of the feasible set for state constrained optimal control problems. These bounds depend on the regularity of the state and the dimension of the
problem. Comparison with numerical results indicates that these bounds are sharp and
are attained for the case of a single active point.

Convergence Analysis of Smoothing Methods for Optimal Control of Stationary Variational Inequalities
(2011)

In the article an optimal control problem subject to a stationary variational inequality
is investigated. The optimal control problem is complemented with pointwise control constraints.
The convergence of a smoothing scheme is analyzed. There, the variational inequality
is replaced by a semilinear elliptic equation. It is shown that solutions of the regularized optimal
control problem converge to solutions of the original one. Passing to the limit in the
optimality system of the regularized problem allows to prove C-stationarity of local solutions of the original problem.
Moreover, convergence rates with respect to the regularization parameter for the error in the control are obtained.
These rates coincide with rates obtained by numerical experiments, which are included in the paper.