J. Computer Applications
Refine
Year of publication
Document Type
- ZIB-Report (39)
- Master's Thesis (10)
- Bachelor's Thesis (3)
Keywords
Institute
- Mathematical Optimization (17)
- Network Optimization (14)
- Visual Data Analysis (10)
- Numerical Mathematics (5)
- Distributed Algorithms and Supercomputing (3)
- Mathematical Optimization Methods (2)
- Visual and Data-centric Computing (2)
- Applied Algorithmic Intelligence Methods (1)
- Computational Nano Optics (1)
- Digital Data and Information for Society, Science, and Culture (1)
For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments.
In graphical representations of public transportation networks, there is often some degree of uncertainty in the arc values, due to delays or transfer times. This uncertainty can be expressed as a parameterized weight on the transfer arcs. Classical shortest path algorithms often have difficulty handling parameterized arc weights and a tropical geometry approach has been shown as a possible solution. The connection between the classical shortest path problem and tropical geometry is well establish: Tropically multiplying the n × n adjacency matrix of a graph with itself n − 1 times results in the so-called Kleene star, and is a matrix-form solution to the all-pairs shortest path problem. Michael Joswig and Benjamin Schröter showed in their paper The Tropical Geometry of Shortest Paths that the same method can be used to find the solution to the all-pairs shortest path problem even in the case of variable arc weights and they proposed an algorithm to solve the single-target shortest path problem in such a case. The solution takes the form of a polyhedral subdivision of the parameter space. As the number of variable arc weights grows, the time needed to execute an implementation of this algorithm grows exponentially. As the size of a public transportation network grows, the number of variable arc weights grows exponentially as well. However, it has been observed that in public transportation networks, there are usually only a few possible shortest routes. Geometrically, this means that there should be few polyhedra in the polyhedral subdivision. This algorithm is used on an example of a real-world public transportation network and an analysis of the polyhedral subdivision is made. Then a geometrical approach is used to analyze the impact of limiting the number of transfers, and thereby limiting the number of parameterized arcs used, as an estimation of the solution to the all-pairs shortest path problem
Die Planung vom Zugumläufen ist eine der wichtigsten Aufgaben für Eisenbahnun- ternehmen. Dabei spielt auch die Einhaltung von vorgegebenen Wartungsintervallen eine zentrale Rolle für die Sicherheit und Zuverlässigkeit der Schienenfahrzeuge. Wir zeigen, wie man dieses Umlaufplanungsproblem unter Beachtung von Wartungsbe- dingungen mathematisch formuliert, modelliert und löst — sowohl in der Theorie als auch im Anwendungsfall mit Szenarien der DB Fernverkehr AG, einer Konzern- tochter der Deutschen Bahn für den Schienenpersonenfernverkehr.
Markus Reuther hat sich in seiner Dissertation [11] mit diesem Problem beschäftigt und es mit Hilfe eines passenden Hypergraphen als gemischt-ganzzahliges Programm modelliert. Neben der Modellierung präsentiert Reuther in seiner Arbeit neuartige algorithmische Ideen, darunter den sogenannten Coarse-to-Fine -Ansatz, bei dem zunächst Teile des Problems auf einer weniger detaillierten ( coarse ) Ebene gelöst werden und diese Lösung dann verwendet wird, um auf effiziente Art und Weise eine Lösung für das ursprüngliche Problem zu finden. Zur Wartungsplanung nutzt Reuther einen Fluss im Hypergraphen, der den Ressourcenverbrauch der Fahrzeuge modelliert. In der linearen Relaxierung des Modells führt dies dazu, dass die Zahl der notwendigen Wartungen systematisch unterschätzt wird. Dadurch bleibt in vielen Fällen eine große Lücke zwischen dem Zielfunktionswert einer optimalen Lösung des ganzzahligen Problems und der untere Schranke, die uns die lineare Relaxierung liefert.
Wir nehmen uns in dieser Arbeit dieses Problems an. Wir entwickeln ein auf Pfaden basierendes ganzzahliges Modell für das Umlaufplanungsproblem und zeigen, dass die untere Schranke mindestens so scharf oder schärfer ist als die untere Schranke, die das Modell von Reuther liefert. Um das Modell zu lösen, entwickeln wir einen Algorithmus, der Spaltengenerierung mit dem Coarse-to-Fine-Ansatz von Reuther verbindet. Weiterhin entwickeln wir eine Spaltenauswahlregel zur Beschleunigung des Algorithmus. Das Modell und alle in der Arbeit vorgestellten Algorithmen wur- den im Rahmen der Arbeit implementiert und mit Anwendungsszenarien der DB Fernverkehr AG getestet. Unsere Tests zeigen, dass unser Modell für fast alle Szena- rien deutlich schärfere untere Schranken liefert als das Modell von Reuther. In den getesteten Instanzen konnten wir durch die Verbesserung der unteren Schranke bis zu 99% der Optimalitätslücke schließen. In einem Drittel der Fälle konnten wir durch unseren Ansatz auch für das ganzzahlige Programm verbesserte Zielfunktionswerte erreichen
Algorithms that solve the shortest path problem can largely be split into the two categories of label setting and label correcting. The Multiobjective Shortest Path (MOSP) problem is a generalization of the classical shortest path problem in terms of the dimension of the cost function. We explore the differences of two similar MOSP label setting algorithms. Furthermore, we present and prove a general method of how to derive Fully Polynomial Time Approximation Schemes (FPTAS) for MOSP label setting algorithms. Finally, we explore two pruning techniques for the one to one variants of exact label setting MOSP algorithms and adapt them to their FPTAS variants.
For this thesis we study the Constrained Horizontal Flightplanning Problem (CHFPP) for which one has to find the path of minimum cost between airports s and t in a directed graph that respects a set of boolean constraints. To this end we give a survey of three different multilabel algorithms that all use a domination subroutine. We summarize an approach by Knudsen, Chiarandini and Larsen to define this domination and afterwards present our own method which builds on that approach. We suggest different implementation techniques to speed up the computation time, most notably a Reoptimization for an iterative method to solve the problem. Furthermore we implemented the different versions of the algorithm and present statistics on their computation as well as an overview of statistics on the set of real-world constraints that we were given. Finally we present two alternative approaches that tackle the problem, a heuristic with similarities to a Lagrangian relaxation and an approach that makes use of an algorithm which finds the k shortest path of a graph such as the ones of Epstein or Yen.
Scheduling ist ein wichtiger Forschungsgegenstand im Bereich der diskreten Optimierung. Es geht darum, einen Schedule, d.h. einen Ablaufplan, für gegebene Ereignisse zu finden. Dieser soll optimal hinsichtlich einer Zielfunktion wie zum Beispiel minimaler Dauer oder Kosten sein. Dabei gibt es in der Regel Nebenbedingungen wie Vorrangbeziehungen zwischen den Ereignissen oder zeitliche Einschränkungen, die zu erfüllen sind. Falls die Ereignisse periodisch wiederkehren, spricht man von periodischem Scheduling. Beispiele sind das Erstellen von Zugfahrplänen, die Schaltungvon Ampelsignalen oder die Planung von Produktionsabläufen.
Mathematisch können diese Probleme mit dem Periodic Event Scheduling Problem (PESP) modelliert werden, das als gemischt-ganzzahliges Programm formuliert werden kann. In dieser Bachelorarbeit wird ein Ansatz zur Lösung des PESP mittels Zerlegung und Dualisierung entwickelt. In den Kapiteln 2 und 3 werden zunächst die notwendigen graphentheoretischen Grundlagen und das PESP eingeführt. In Kapitel 4 wird das PESP durch Fixierung der ganzzahligen Variablen in lineare Programme zerlegt. Dieses Unterproblem wird dualisiert und wieder in das PESP eingesetzt. Dafür ist eine weitere Nebenbedingung nötig.
Im fünften Kapitel behandeln wir die Lösung des teildualisierten PESP. Eine Möglichkeit ist es, sich auf eine Teilmenge der Nebenbedingungen zu beschränken. Eine weitere Möglichkeit ist ein Algorithmus, derähnlich wie BendersZerlegung die Nebenbedingungen dynamisch erzeugt. Dieser Algorithmus wird in Kapitel 6 implementiert und an vier Beispielen getestet.
We propose a tropical interpretation of the solution space of the Periodic Event Scheduling Problem as a collection of polytropes, making use of the characterization of tropical cones as weighted digraph polyhedra. General and geometric properties of the polytropal collection are inspected and understood in connection with the combinatorial properties of the underlying periodic event scheduling instance. Novel algorithmic
ideas are presented and tested, making use of the aforementioned theoretical results to solve and optimize the problem.
One of the fundamental steps in the optimization of public transport is line planning. It involves determining lines and assigning frequencies of service such that costs are minimized while also maximizing passenger comfort and satisfying travel demands. We formulate the problem as a mixed integer linear program that considers all circuit-like lines in a graph and allows free passenger routing. Traveler and operator costs are included in a linear scalarization in the objective. We apply said programming problem to the Parametric City, which is a graph model introduced by Fielbaum, Jara-Díaz and Gschwender that exibly represents different cities. In his dissertation, Fielbaum solved the line planning problem for various parameter choices in the Parametric City. In a first step, we therefore review his results and make comparative computations. Unlike Fielbaum we arrive at the conclusion that the optimal line plan for this model indeed depends on the demand. Consequently, we analyze the line planning problem in-depth: We find equivalent, but easier to compute formulations and provide a lower bound by LP-relaxation, which we show to be equivalent to a multi-commodity flow problem. Further, we examine what impact symmetry has on the solutions. Supported both by computational results as well as by theoretical analysis, we reach the conclusion that symmetric line plans are optimal or near-optimal in the Parametric City. Restricting the model to symmetric line plans allows for a \kappa-factor approximation algorithm for the line planning problem in the Parametric City.
This work presents a fully automated pipeline, centered around a deep neural network, as well as a method to train that network in an efficient manner, that enables accurate detection of lesions in meniscal anatomical subregions. The network architecture is based on a transformer encoder/decoder. It is trained on DESS and tuned on IW TSE 3D MRI scans sourced from the Osteoarthritis Initiative. Furthermore, it is trained in a multilabel, and multitask fashion, using an auxiliary detection head. The former enables implicit localisation
of meniscal defects, that to the best of my knowledge, has not yet been reported elsewhere. The latter enables efficient learning on the entire 3D MRI volume. Thus, the proposed method does not require any expert knowledge at inference. Aggregated inference results from two datasets resulted in an overall AUCROC result of 0.90, 0.91 and 0.93 for meniscal lesion detection anywhere in the knee, in medial and in lateral menisci respectively. These results compare very well to the related work, even though only a fraction of the data has been utilized. Clinical applicability and benefit is yet to be determined.