35C20 Asymptotic expansions
Refine
Year of publication
- 2001 (1)
Document Type
- ZIB-Report (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
Institute
- ZIB Allgemein (1)
The pole condition is a general concept for the theoretical analysis and the numerical solution of a variety of wave propagation problems. It says that the Laplace transform of the physical solution in radial direction has no poles in the lower complex half-plane. In the present paper we show that for the Helmholtz equation with a radially symmetric potential the pole condition is equivalent to Sommerfeld's radiation condition. Moreover, a new representation formula based on the pole condition is derived and used to prove existence, uniqueness and asymptotic properties of solutions. This lays the foundations of a promising new algorithm to solve time-harmonic scattering problems numerically and provides a new approach for analyzing existing algorithms such as the Perfectly Matched Layer (PML) method and the Bayliss-Gunzburger-Turkel (BGT) algorithm.