### Refine

#### Year of publication

- 1988 (2)

#### Document Type

- ZIB-Report (2)

#### Language

- English (2)

#### Has Fulltext

- yes (2)

#### Is part of the Bibliography

- no (2)

#### Institute

- ZIB Allgemein (2)

The paper presents a new application of computer algebra to the treatment of steady states of reaction systems. The method is based on the Buchberger algorithm. This algorithm was modified such that it can exploit the special structure of the equations derived from reaction systems, so even large systems can be handled. In contrast to numerical approximation techniques, the algebraic solution gives a complete and definite overview of the solution space and it is even applicable when parameter values are unknown or undetermined. The algorithm, its adaptation to the problem class and its application to selected examples are presented.

Gröbner bases are the main tool for solving systems of algebraic equations and some other problems in connection with polynomial ideals using Computer Algebra Systems. The procedure for the computation of Gröbner bases in REDUCE 3.3 has been modified in order to solve more complicated algebraic systems of equations by some general improvements and by some tools based on the specific resources of the CRAY X-MP. We present this modification and illustrate it by examples.