### Refine

#### Year of publication

#### Document Type

- ZIB-Report (9)
- In Proceedings (8)
- Article (5)
- Book (1)
- Book chapter (1)

#### Language

- English (24)

#### Is part of the Bibliography

- no (24)

#### Keywords

- elevator control (2)
- eulerian multigraphs (2)
- scheduling (2)
- Aufzugssteuerung (1)
- Depot Planning (1)
- Exakte Reoptimierung (1)
- Mixed-Integer Nonlinear Programming (1)
- Moving Block (1)
- Onlineoptimierung (1)
- Railway Timetabling (1)

#### Institute

The task of an elevator control is to schedule the elevators of a group such
that small waiting and travel times for the passengers are obtained. We present an exact
reoptimization algorithm for this problem. A reoptimization algorithm computes a
new schedule for the elevator group each time a new passenger arrives. Our algorithm
uses column generation techniques and is, to the best of our knowledge, the first exact
reoptimization algorithms for a group of passenger elevators. To solve the column
generation problem, we propose a Branch & Bound method.

We consider the following freight train routing problem (FTRP). Given is a
transportation network with fixed routes for passenger trains and a
set of freight trains (requests), each defined by an origin and
destination station pair. The objective is to calculate a feasible
route for each freight train such that a sum of all expected delays and
all running times is minimal. Previous research concentrated on
microscopic train routings for junctions or inside major stations. Only
recently approaches were developed to tackle larger corridors or even
networks. We investigate the routing problem from a strategic
perspective, calculating the routes in a macroscopic transportation
network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of
complex real-world structures are into fewer network elements. Moreover, the
departure and arrival times of freight trains are approximated.
The problem has a strategic
character since it asks only for a coarse routing through the network
without the precise timings. We give a mixed-integer nonlinear programming~(MINLP)
formulation for FTRP, which is a multi-commodity flow model on a time-expanded
graph with additional routing constraints. The model's nonlinearities are due to
an algebraic approximation of the delays of the trains on the arcs of
the network
by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP)
by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances.

The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.

Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.

We consider the following freight train routing problem (FTRP).
Given is a transportation network with fixed routes for passenger
trains and a set of freight trains (requests), each defined by an
origin and destination station pair. The objective is to
calculate a feasible route for each freight train such that the
sum of all expected delays and all running times is minimal.
Previous research concentrated on microscopic train routings for
junctions or inside major stations. Only recently approaches were
developed to tackle larger corridors or even networks. We
investigate the routing problem from a strategic perspective,
calculating the routes in a macroscopic transportation network of
Deutsche Bahn AG. In this context, macroscopic refers to an
aggregation of complex and large real-world structures into fewer
network elements. Moreover, the departure and arrival times of
freight trains are approximated. The problem has a strategic
character since it asks only for a coarse routing through the
network without the precise timings. We provide a mixed-integer
nonlinear programming (MINLP) formulation for the FTRP, which is
a multicommodity flow model on a time-expanded graph with
additional routing constraints. The model’s nonlinearities
originate from an algebraic approximation of the delays of the
trains on the arcs of the network by capacity restraint
functions. The MINLP is reduced to a mixed-integer linear
model (MILP) by piecewise linear approximation. The latter is
solved by a state-of-the art MILP solver for various real-world
test instances.

Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Borndörfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.

Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays.
We conclude with computational results for both models, observing that they perform well on real timetables.