### Refine

#### Document Type

- ZIB-Report (8)
- In Proceedings (7)
- Article (4)
- Book (1)
- Book chapter (1)

#### Language

- English (21)

#### Is part of the Bibliography

- no (21)

#### Keywords

- elevator control (2)
- eulerian multigraphs (2)
- scheduling (2)
- Aufzugssteuerung (1)
- Depot Planning (1)
- Exakte Reoptimierung (1)
- Mixed-Integer Nonlinear Programming (1)
- Onlineoptimierung (1)
- Railway Track Assignment (1)
- branch-and-bound (1)

#### Institute

This extended abstract is about algorithms for controlling elevator systems employing destination hall calls, i.e. the passenger provides his destination floor when calling an elevator. We present the first exact algorithm for controlling a group of elevators and report on simulation results indicating that destination hall call systems outperform conventional systems.

The task of an elevator control is to schedule the elevators of a group such
that small waiting and travel times for the passengers are obtained. We present an exact
reoptimization algorithm for this problem. A reoptimization algorithm computes a
new schedule for the elevator group each time a new passenger arrives. Our algorithm
uses column generation techniques and is, to the best of our knowledge, the first exact
reoptimization algorithms for a group of passenger elevators. To solve the column
generation problem, we propose a Branch & Bound method.

We consider reoptimization (i.e. the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm.
We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm.

We consider the following freight train routing problem (FTRP). Given is a
transportation network with fixed routes for passenger trains and a
set of freight trains (requests), each defined by an origin and
destination station pair. The objective is to calculate a feasible
route for each freight train such that a sum of all expected delays and
all running times is minimal. Previous research concentrated on
microscopic train routings for junctions or inside major stations. Only
recently approaches were developed to tackle larger corridors or even
networks. We investigate the routing problem from a strategic
perspective, calculating the routes in a macroscopic transportation
network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of
complex real-world structures are into fewer network elements. Moreover, the
departure and arrival times of freight trains are approximated.
The problem has a strategic
character since it asks only for a coarse routing through the network
without the precise timings. We give a mixed-integer nonlinear programming~(MINLP)
formulation for FTRP, which is a multi-commodity flow model on a time-expanded
graph with additional routing constraints. The model's nonlinearities are due to
an algebraic approximation of the delays of the trains on the arcs of
the network
by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP)
by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances.

We consider problems concerning the scheduling of a set of trains on a single track. For every pair of trains there is a minimum headway, which every train must wait before it enters the track after another train. The speed of each train is also given. Hence for every schedule - a sequence of trains - we may compute the time that is at least needed for all trains to travel along the track in the given order. We give the solution to three problems: the fastest schedule, the average schedule, and the problem of quantile schedules. The last problem is a question about the smallest upper bound on the time of a given fraction of all possible schedules. We show how these problems are related to the travelling salesman problem. We prove NP-completeness of the fastest schedule problem, NP-hardness of quantile of schedules problem, and polynomiality of the average schedule problem. We also describe some algorithms for all three problems. In the solution of the quantile problem we give an algorithm, based on a reverse search method, generating with polynomial delay all Eulerian multigraphs with the given degree sequence and a bound on the number of such multigraphs. A better bound is left as an open question.

Freight Train Routing
(2018)

This chapter is about strategic routing of freight trains in railway transportation networks with mixed traffic. A good utilization of a railway transportation network is important since in contrast to road and air traffic the routing through railway networks is more challenging and the extension of capacities is expensive and a long-term projects. Therefore, an optimized routing of freight trains have a great potential to exploit remaining capacity since the routing has fewer restrictions compared to passenger trains. In this chapter we describe the freight train routing problem in full detail and present a mixed-integer formulation. Wo focus on a strategic level that take into account the actual immutable passenger traffic. We conclude the chapter with a case study for the German railway network.

Managing rolling stock with no passengers aboard is a critical component of railway operations. One aspect of managing rolling stock is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with a fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we show that the TAP is NP-hard and present two integer programming models for solving the TAP. We compare both models on a theoretical level. Moreover, to our knowledge, we consider the first approach that integrates track lengths along with the three most common types of parking tracks FIFO, LIFO and FREE tracks in a common model. Furthermore, to optimize against uncertainty in the arrival times of the trains we extend our models by stochastic and robust modeling techniques. We conclude by giving computational results for both models, observing that they perform well on real timetables.