Refine
Document Type
- Article (3)
- ZIB-Report (2)
Language
- English (5)
Is part of the Bibliography
- no (5)
Keywords
- biochemical conformations (1)
- cluster analysis (1)
- conformational dynamics (1)
- fuzzy sets (1)
- molecular dynamics (1)
- transition states (1)
Recently, a novel approach for the analysis of molecular dynamics on the basis of a transfer operator has been introduced. Therein conformations are considered to be disjoint metastable clusters within position space of a molecule. These clusters are defined by almost invariant characteristic functions that can be computed via {\em Perron Cluster} analysis. The present paper suggests to replace crisp clusters with {\em fuzzy} clusters, i.e. to replace characteristic functions with membership functions. This allows a more sufficient characterization of transiton states between different confor conformations and therefore leads to a better understanding of molecular dynamics. Fur thermore, an indicator for the uniqueness of metastable fuzzy clusters and a fast algorithm for the computation of these clusters are described. Numerical examples are included.
Quadratic optimization problems (QPs) are ubiquitous, and solution algorithms have matured to a reliable technology. However, the precision of solutions is usually limited due to the underlying floating-point operations. This may cause inconveniences when solutions are used for rigorous reasoning. We contribute on three levels to overcome this issue.
First, we present a novel refinement algorithm to solve QPs to arbitrary precision. It iteratively solves refined QPs, assuming a floating-point QP solver oracle. We prove linear convergence of residuals and primal errors. Second, we provide an efficient implementation, based on SoPlex and qpOASES that is publicly available in source code. Third, we give precise reference solutions for the Maros and Mészáros benchmark library.
Quadratic optimization problems (QPs) are ubiquitous, and solution algorithms have matured to a reliable technology. However, the precision of solutions is usually limited due to the underlying floating-point operations. This may cause inconveniences when solutions are used for rigorous reasoning. We contribute on three levels to overcome this issue.
First, we present a novel refinement algorithm to solve QPs to arbitrary precision. It iteratively solves refined QPs, assuming a floating-point QP solver oracle. We prove linear convergence of residuals and primal errors. Second, we provide an efficient implementation, based on SoPlex and qpOASES that is publicly available in source code. Third, we give precise reference solutions for the Maros and Mészáros benchmark library.
In this paper we discuss the notion of research data for the field of mathematics and report on the status quo of research-data management and planning. A number of decentralized approaches are presented and compared to needs and challenges faced in three use cases from different mathematical subdisciplines. We highlight the importance of tailoring research-data management plans to mathematicians’ research processes and discuss their usage all along the data life cycle.