### Refine

#### Document Type

- In Proceedings (2)
- ZIB-Report (1)

#### Language

- English (3)

#### Is part of the Bibliography

- no (3)

#### Keywords

- Airline Applications (1)
- Logistics (1)

PolySCIP
(2016)

PolySCIP is a new solver for multi-criteria integer and multi-criteria linear programs handling an arbitrary number of objectives. It is available as an official part of the non-commercial constraint integer programming framework SCIP. It utilizes a lifted weight space approach to compute the set of supported extreme non-dominated points and unbounded non-dominated rays, respectively. The algorithmic approach can be summarized as follows: At the beginning an arbitrary non-dominated point is computed (or it is determined that there is none) and a weight space polyhedron created. In every next iteration a vertex of the weight space polyhedron is selected whose entries give rise to a single-objective optimization problem via a combination of the original objectives. If the ptimization of this single-objective problem yields a new non-dominated point, the weight space polyhedron is updated. Otherwise another vertex of the weight space polyhedron is investigated. The algorithm finishes when all vertices of the weight space polyhedron have been investigated. The file format of PolySCIP is based on the widely used MPS format and allows a simple generation of multi-criteria models via an algebraic modelling language.

Air freight is usually shipped in standardized unit load devices (ULDs).
The planning process for the consolidation of transit cargo from inbound flights or locally emerging shipments into ULDs for outbound flights is called build-up scheduling.
More specifically, outbound ULDs must be assigned a time and a workstation subject to both workstation capacity constraints and the availability of shipments which in turn depends on break-down decisions for incoming ULDs.
ULDs scheduled for the same outbound flight should be built up in temporal and spatial proximity.
This serves both to minimize overhead in transportation times and to allow workers to move freight between ULDs.
We propose to address this requirement by processing ULDs for the same outbound flight in batches.
For the above build-up scheduling problem, we introduce a multi-commodity network design model.
Outbound flights are modeled as commodities; transit cargo is represented by cargo flow volume and unpack and batch decisions are represented as design variables.
The model is solved with standard MIP solvers on a set of benchmark data.
For instances with a limited number of resource conflicts, near-optimal solutions are found in under two hours for a whole week of operations.

Air freight is usually shipped in standardized unit load devices (ULDs). The planning process for the consolidation of transit cargo from inbound flights or locally emerging shipments into ULDs for outbound flights is called build-up scheduling. More specifically, outbound ULDs must be assigned a time and a workstation subject to both workstation capacity constraints and the availability of shipments which in turn depends on break-down decisions for incoming ULDs. ULDs scheduled for the same outbound flight should be built up in temporal and spatial proximity. This serves both to minimize overhead in transportation times and to allow workers to move freight between ULDs. We propose to address this requirement by processing ULDs for the same outbound flight in batches.
For the above build-up scheduling problem, we introduce a multi-commodity network design model. Outbound flights are modeled as commodities; transit cargo is represented by cargo flow volume and unpack and batch decisions are represented as design variables. The model is solved with a standard MIP solver on a set of benchmark data. For instances with a limited number of resource conflicts, near-optimal solutions are found in under two hours for a whole week of operations.