Refine
Year of publication
Document Type
- Article (67)
- In Proceedings (6)
- ZIB-Annual (2)
- Doctoral Thesis (1)
- In Collection (1)
- ZIB-Report (1)
Is part of the Bibliography
- no (78)
Keywords
- Jahresbericht (2)
- KOBV (2)
- ANFIS (1)
- ANN (1)
- Cross-validation (1)
- Disease severity (1)
- Epidemiology (1)
- Infectious Diseases (1)
- MODIS (1)
- Microbiology (1)
The evolution of many dynamical systems that describe relationships or interactions between objects can be effectively modeled by temporal networks, which are typically represented as a sequence of static network snapshots. In this paper, we introduce a novel random walk based approach that can identify clusters of time-snapshots in which network community structures are stable. This allows to detect significant structural shifts over time, such as the splitting, merging, birth, or death of communities. We also provide a low-dimensional representation of entire snapshots, placing those with similar community structure close to each other in the feature space. To validate our approach, we develop an agent-based algorithm that generates synthetic datasets with the desired characteristic properties, enabling thorough testing and benchmarking. We further demonstrate the effectiveness and broad applicability of our technique by testing it on various social dynamics models and real-world datasets and comparing its performance to several state-of-the-art algorithms. Our findings highlight the strength of our approach to correctly capture and analyze the dynamics of complex systems.
Inferring Proteolytic Processes from Mass Spectrometry Time Series Data Using Degradation Graphs
(2012)
Beating the Noise
(2006)
Circular RNAs (circRNAs) are a group of single-stranded RNAs in closed circular form. They are splicing-generated, widely expressed in various tissues and have functional implications in development and diseases. To facilitate genome-wide characterization of circRNAs using RNA-Seq data, we present a freely available software package named acfs. Acfs allows de novo, accurate and fast identification and abundance quantification of circRNAs from single- and paired-ended RNA-Seq data. On simulated datasets, acfs achieved the highest F1 accuracy and lowest false discovery rate among current state-of-the-art tools. On real-world datasets, acfs efficiently identified more bona fide circRNAs. Furthermore, we demonstrated the power of circRNA analysis on two leukemia datasets. We identified a set of circRNAs that are differentially expressed between AML and APL samples, which might shed light on the potential molecular classification of complex diseases using circRNA profiles. Moreover, chromosomal translocation, as manifested in numerous diseases, could produce not only fusion transcripts but also fusion circRNAs of clinical relevance. Featured with high accuracy, low FDR and the ability to identify fusion circRNAs, we believe that acfs is well suited for a wide spectrum of applications in characterizing the landscape of circRNAs from non-model organisms to cancer biology.
One of the widely recognized features of biological systems is their modularity. The modules that comprise biological systems are said to be redeployed and combined across several conditions. In this work, we analyze to what extent are these modules indeed reusable as compared to randomized versions of a system. We develop a notion of modular decompositions of systems that allows for modules to overlap while maximizing the number of times a module is reused across several conditions. Different biological systems present modules whose reusability ranges from the condition specific to the constitutive, although their average reusability is not always higher than random equivalents of the system. These decompositions reveal a distinct distribution of module sizes in real biological systems. This distribution stems, in part, from the peculiar usage pattern of the elements of biological systems, and constitutes a new angle to study the evolution of modularity.
Regulatory authorities often receive poorly structured safety reports requiring considerable effort to investigate potential adverse events post hoc. Automated question-and-answer systems may help to improve the overall quality of safety information transmitted to pharmacovigilance agencies. This paper explores the use of the VACC-Tool (ViVI Automated Case Classification Tool) 2.0, a mobile application enabling physicians to classify clinical cases according to 14 pre-defined case definitions for neuroinflammatory adverse events (NIAE) and in full compliance with data standards issued by the Clinical Data Interchange Standards Consortium.
METHODS:
The validation of the VACC-Tool 2.0 (beta-version) was conducted in the context of a unique quality management program for children with suspected NIAE in collaboration with the Robert Koch Institute in Berlin, Germany. The VACC-Tool was used for instant case classification and for longitudinal follow-up throughout the course of hospitalization. Results were compared to International Classification of Diseases , Tenth Revision (ICD-10) codes assigned in the emergency department (ED).
RESULTS:
From 07/2013 to 10/2014, a total of 34,368 patients were seen in the ED, and 5243 patients were hospitalized; 243 of these were admitted for suspected NIAE (mean age: 8.5 years), thus participating in the quality management program. Using the VACC-Tool in the ED, 209 cases were classified successfully, 69 \% of which had been missed or miscoded in the ED reports. Longitudinal follow-up with the VACC-Tool identified additional NIAE.
CONCLUSION:
Mobile applications are taking data standards to the point of care, enabling clinicians to ascertain potential adverse events in the ED setting and during inpatient follow-up. Compliance with Clinical Data Interchange Standards Consortium (CDISC) data standards facilitates data interoperability according to regulatory requirements.