Refine
Document Type
- ZIB-Report (6)
- Article (3)
- In Proceedings (2)
- Book chapter (1)
Is part of the Bibliography
- no (12)
Keywords
Institute
We present an approach to implement an auction of railway slots. Railway network, train driving characteristics, and safety requirements are described by a simplified, but still complex macroscopic model. In this environment, slots are modelled as combinations of scheduled track segments. The auction design builds on the iterative combinatorial auction. However, combinatorial bids are restricted to some types of slot bundles that realize positive synergies between slots. We present a bidding language that allows bidding for these slot bundles. An integer programming approach is proposed to solve the winner determination problem of our auction. Computational results for auction simulations in the Hannover-Fulda-Kassel area of the German railway network give evidence that auction approaches can induce a more efficient use of railway capacity.
We introduce (TTPlib), a data library for train timetabling problems that can be accessed at http://ttplib.zib.de. In version 1.0, the library contains data related to 50 scenarios. Most instances result from the combination of macroscopic railway networks and several train request sets for the German long distance area containing Hannover, Kassel and Fulda, short denoted by Ha-Ka-Fu. In this paper, we introduce the data concepts of TTPlib, describe the scenarios included in the library and provide a free visualization tool TraVis.
The paper addresses the unit commitment problem in power plant operation planning. For a real power system comprising coal and gas fired thermal as well as pumped storage hydro plants a large-scale mixed integer optimization model for unit commitment is developed. Then primal and dual approaches to solving the optimization problem are presented and results of test runs are reported.
The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators.
While previously network operator and gas vendor where united, they were forced to split up into independent companies.
The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way.
We show that these new paradigms lead to new and challenging mathematical optimization problems.
In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed.
With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.
In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.
The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network’s capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.
The goal of visualization is to effectively and accurately communicate data. Visualization research has often overlooked the errors and uncertainty which accompany the scientific process and describe key characteristics used to fully understand the data. The lack of these representations can be attributed, in part, to the inherent difficulty in defining, characterizing, and controlling this uncertainty, and in part, to the difficulty in including additional visual metaphors in a well designed, potent display. However, the exclusion of this information cripples the use of visualization as a decision making tool due to the fact that the display is no longer a true representation of the data. This systematic omission of uncertainty commands fundamental research within the visualization community to address, integrate, and expect uncertainty information. In this chapter, we outline sources and models of uncertainty, give an overview of the state-of-the-art, provide general guidelines, outline small exemplary applications, and finally, discuss open problems in uncertainty visualization.