Refine
Document Type
- In Proceedings (3)
- Article (2)
Language
- English (5)
Has Fulltext
- no (5)
Is part of the Bibliography
- no (5)
Institute
Scientific visualization and tomographic imaging techniques have created unprecedented possibilities for non-destructive analyses of digital specimens in morphology. However, practitioners encounter difficulties retaining critical information from complex tomographic volumes in their workflows. In light of this challenge, we investigated the effectiveness of visuohaptic integration in enhancing memory retention of morphological data. In a within-subjects user study (N=18), participants completed a delayed match-to-sample task, where we compared error rates and response times across visual and visuohaptic sensory modality conditions. Our results indicate that visuohaptic encoding improves the retention of tomographic images, producing significantly reduced error rates and faster response times than its unimodal visual counterpart. Our findings suggest that integrating haptics into scientific visualization interfaces may support professionals in fields such as morphology, where accurate retention of complex spatial data is essential for efficient analysis and decision-making within virtual environments.
Although Virtual Reality (VR) has undoubtedly improved human interaction with 3D data, users still face difficulties retaining important details of complex digital objects in preparation for physical tasks. To address this issue, we evaluated the potential of visuohaptic integration to improve the memorability of virtual objects in immersive visualizations. In a user study (N=20), participants performed a delayed match-to-sample task where they memorized stimuli of visual, haptic, or visuohaptic encoding conditions. We assessed performance differences between the conditions through error rates and response time. We found that visuohaptic encoding significantly improved memorization accuracy compared to unimodal visual and haptic conditions. Our analysis indicates that integrating haptics into immersive visualizations enhances the memorability of digital objects. We discuss its implications for the optimal encoding design in VR applications that assist professionals who need to memorize and recall virtual objects in their daily work.
Haptic feedback reportedly enhances human interaction with 3D data, particularly improving the retention of mental representations of digital objects in immersive settings. However, the effectiveness of visuohaptic integration in promoting object retention across different display environments remains underexplored. Our study extends previous research on the retention effects of haptics from virtual reality to a projected surface display to assess whether earlier findings generalize to 2D environments. Participants performed a delayed match-to-sample task incorporating visual, haptic, and visuohaptic sensory feedback within a projected surface display environment. We compared error rates and response times across these sensory modalities and display environments. Our results reveal that visuohaptic integration significantly enhances object retention on projected surfaces, benefiting task performance across display environments. Our findings suggest that haptics can improve object retention without requiring fully immersive setups, offering insights for the design of interactive systems that assist professionals who rely on precise mental representations of digital objects.
MorphoHaptics: An Open-Source Tool for Visuohaptic Exploration of Morphological Image Datasets
(2025)
Although digital methods have significantly advanced morphology, practitioners are still challenged to understand and process tomographic data of specimens. As automated processing of fossil data is still insufficient, morphologists still engage in intensive manual work to digitally prepare fossils for research objectives. We present an open-source tool that enables morphologists to explore tomographic data similarly to the physical workflows that traditional fossil preparators experience in the field. Using questionnaires, we assessed the usability of our prototype for virtual fossil preparation and related common tasks in the digital preparation workflow. Our findings indicate that integrating haptics into the virtual preparation workflow enhances the understanding of the morphology and material properties of working specimens and that the visuohaptic sculpting of fossil volumes is straightforward and is an improvement over current digital specimen processing methods.