Refine
Year of publication
Document Type
- Article (11)
- Doctoral Thesis (1)
Has Fulltext
- no (12)
Is part of the Bibliography
- no (12)
Keywords
- nasal breathing (2)
- statistical shape model (2)
- diANA (1)
- inferior turbinate (1)
- isthmus nasi (1)
- nasal airflow (1)
- nasal airflow simulation (1)
- nasal cavity (1)
- nasal obstruction (1)
- rhinorespiratory homeostasis (1)
Institute
Background: Currently, there is no fully sufficient way to differentiate between symptomatic and normal nasal breathing. Using the nose’s total resistance is disputed as a valid means to objectify nasal airflow, and the need for a more comprehensive diagnostic method is increasing. This work’s aim was to test a novel approach considering intranasal wall shear stress as well as static pressure maps obtained by computational fluid dynamics (CFD).
Methods: X-ray computed tomography (CT) scan data of six symptom-free subjects and seven symptomatic patients were used. Patient-specific geometries of the nasal cavity were segmented from these data sets. Inspiratory and expiratory steady airflow simulations were performed using CFD. Calculated static pressures and wall shear stresses (WSS) were mapped onto a common template of the nasal septum, allowing for comparison of these parameters between the two patient groups.
Results: Significant differences in wall shear stress distributions during the inspiratory phase could be identified between the two groups, whereas no differences were found for the expiratory phase. It is assumed that one essential feature of normal nasal breathing probably consists in distinctively different intranasal flow fields for inspiration and expiration. This is in accordance with previous investigations.
Conclusion: The proposed method seems to be a promising tool for developing a new kind of patient-specific assessment of nasal breathing. However, more studies and a greater case number of data with an expanded focus, would be ideal.
Functional surgery on the nasal framework requires referential criteria to objectively assess nasal breathing for indication and follow-up. Thismotivated us to generate amean geometry of the nasal cavity based on a statistical shape model. In this study, the authors could demonstrate that the introduced nasal cavity’s mean geometry features characteristics of the inner shape and airflow, which are commonly observed in symptom-free subjects. Therefore, the mean geometry might serve as a reference-like model when one considers qualitative aspects. However, to facilitate quantitative considerations and statistical inference, further research is necessary. Additionally, the authorswere able to obtain details about the importance of the isthmus nasi and the inferior turbinate for the intranasal airstream.