With the advent of high-performance computing, Bayesian methods are becoming increasingly popular tools for the quantification of uncertainty throughout science and industry. Since these methods can impact the making of sometimes critical decisions in increasingly complicated contexts, the sensitivity of their posterior conclusions with respect to the underlying models and prior beliefs is a pressing question to which there currently exist positive and negative answers. We report new results suggesting that, although Bayesian methods are robust when the number of possible outcomes is finite or when only a finite number of marginals of the data-generating distribution are unknown, they could be generically brittle when applied to continuous systems (and their discretizations) with finite information on the data-generating distribution. If closeness is defined in terms of the total variation (TV) metric or the matching of a finite system of generalized moments, then (1) two practitioners who use arbitrarily close models and observe the same (possibly arbitrarily large amount of) data may reach opposite conclusions; and (2) any given prior and model can be slightly perturbed to achieve any desired posterior conclusion. The mechanism causing brittleness/robustness suggests that learning and robustness are antagonistic requirements, which raises the possibility of a missing stability condition when using Bayesian inference in a continuous world under finite information.

Given a sequence of Cauchy-distributed random variables defined by a sequence of location parameters and a sequence of scale parameters, we consider another sequence of random variables that is obtained by perturbing the location or scale parameter sequences. Using a result of Kakutani on equivalence of infinite product measures, we provide sufficient conditions for the equivalence of laws of the two sequences.

This article extends the framework of Bayesian inverse problems in infinite-dimensional parameter spaces, as advocated by Stuart (Acta Numer. 19:451–559, 2010) and others, to the case of a heavy-tailed prior measure in the family of stable distributions, such as an infinite-dimensional Cauchy distribution, for which polynomial moments are infinite or undefined. It is shown that analogues of the Karhunen–Loève expansion for square-integrable random variables can be used to sample such measures. Furthermore, under weaker regularity assumptions than those used to date, the Bayesian posterior measure is shown to depend Lipschitz continuously in the Hellinger metric upon perturbations of the misfit function and observed data.

Probabilistic Meshless Methods for Partial Differential Equations and Bayesian Inverse Problems
(2016)

This paper develops a class of meshless methods that are well-suited to statistical inverse problems involving partial differential equations (PDEs). The methods discussed in this paper view the forcing term in the PDE as a random field that induces a probability distribution over the residual error of a symmetric collocation method. This construction enables the solution of challenging inverse problems while accounting, in a rigorous way, for the impact of the discretisation of the forward problem. In particular, this confers robustness to failure of meshless methods, with statistical inferences driven to be more conservative in the presence of significant solver error. In addition, (i) a principled learning-theoretic approach to minimise the impact of solver error is developed, and (ii) the challenging setting of inverse problems with a non-linear forward model is considered. The method is applied to parameter inference problems in which non-negligible solver error must be accounted for in order to draw valid statistical conclusions.

This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model

We consider the application of active subspaces to inform a Metropolis-Hastings algorithm, thereby aggressively reducing the computational dimension of the sampling problem. We show that the original formulation, as proposed by Constantine, Kent, and Bui-Thanh (SIAM J. Sci. Comput., 38(5):A2779-A2805, 2016), possesses asymptotic bias. Using pseudo-marginal arguments, we develop an asymptotically unbiased variant. Our algorithm is applied to a synthetic multimodal target distribution as well as a Bayesian formulation of a parameter inference problem for a Lorenz-96 system.

Modes of a probability measure on an infinite-dimensional Banach space X are often defined by maximising the small-radius limit of the ratio of measures of norm balls. Helin and Burger weakened the definition of such modes by considering only balls with centres in proper subspaces of X, and posed the question of when this restricted notion coincides with the unrestricted one. We generalise these definitions to modes of arbitrary measures on topological vector spaces, defined by arbitrary bounded, convex, neighbourhoods of the origin. We show that a coincident limiting ratios condition is a necessary and sufficient condition for the equivalence of these two types of modes, and show that the coincident limiting ratios condition is satisfied in a wide range of topological vector spaces.

For Kendall’s shape space we determine analytically Jacobi fields and parallel transport, and compute geodesic regression. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and reduce the computational expense by several orders of magnitude. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data.
As application example we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative. Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data only.

We consider the use of randomised forward models and log-likelihoods within the Bayesian approach to inverse problems. Such random approximations to the exact forward model or log-likelihood arise naturally when a computationally expensive model is approximated using a cheaper stochastic surrogate, as in Gaussian process emulation (kriging), or in the field of probabilistic numerical methods. We show that the Hellinger distance between the exact and approximate Bayesian posteriors is bounded by moments of the difference between the true and approximate log-likelihoods. Example applications of these stability results are given for randomised misfit models in large data applications and the probabilistic solution of ordinary differential equations.

It is well understood that Bayesian decision theory and average case analysis are essentially identical. However, if one is interested in performing uncertainty quantification for a numerical task, it can be argued that the decision-theoretic framework is neither appropriate nor sufficient. To this end, we consider an alternative optimality criterion from Bayesian experimental design and study its implied optimal information in the numerical context. This information is demonstrated to differ, in general, from the information that would be used in an average-case-optimal numerical method. The explicit connection to Bayesian experimental design suggests several distinct regimes in which optimal probabilistic numerical methods can be developed.

The recent article "A Bayesian conjugate gradient method" by Cockayne, Oates, Ipsen, and Girolami proposes an approximately Bayesian iterative procedure for the solution of a system of linear equations, based on the conjugate gradient method, that gives a sequence of Gaussian/normal estimates for the exact solution. The purpose of the probabilistic enrichment is that the covariance structure is intended to provide a posterior measure of uncertainty or confidence in the solution mean. This note gives some comments on the article, poses some questions, and suggests directions for further research.