### Refine

#### Document Type

- ZIB-Report (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- yes (4)

#### Keywords

- Parallel Branch-and-Bound (1)
- QAP (1)

#### Institute

We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method efficiently implemented on a powerful computer system using the Ubiquity Generator(UG) framework that can utilize more than 100,000 cores. Lower bounding procedures incorporated in the branch-and-bound method play a crucial role in solving the problems. For a strong lower bounding procedure, we employ the Lagrangian doubly nonnegative (DNN) relaxation and the Newton-bracketing method developed by the authors’ group. In this report, we describe some basic tools used in the project including the lower bounding procedure and branching rules, and present some preliminary numerical results.
Our next target problem is QAPs with dimension at least 50, as we have succeeded to solve tai30a and sko42 from QAPLIB for the first time.

大規模二次割当問題への挑戦
(2022)

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92.The converted BQOP is much simpler than the original QAP tai256c and it also inherits some of the symmetry properties. However, it is still very difficult to solve. We present an efficient branch and bound method for improving the lower bound effectively. A new lower bound with 1.36% gap is also provided.

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25% gap is successfully obtained, and computing an LB with 1.0% gap is shown to be still quite difficult.