Refine
Year of publication
Document Type
- In Proceedings (42)
- Article (36)
- ZIB-Report (19)
- In Collection (3)
- Other (2)
- Book chapter (1)
- Doctoral Thesis (1)
- Poster (1)
- Research data (1)
Keywords
- model-based inversion (3)
- Monte Carlo (2)
- blood oxygen saturation (2)
- inverse problem (2)
- quantitative photoacoustic imaging (2)
- spectral unmixing (2)
- 2-photon microscopy (1)
- 2D distance map (1)
- Amira (1)
- Beton (1)
Institute
- Visual Data Analysis (103)
- Image Analysis in Biology and Materials Science (72)
- Visual Data Analysis in Science and Engineering (26)
- Therapy Planning (17)
- Visual and Data-centric Computing (5)
- Numerical Mathematics (2)
- Vergleichende Visualisierung (2)
- Distributed Algorithms and Supercomputing (1)
- ZIB Allgemein (1)
Im Rahmen der biomechanischen Simulation knöcherner Organe ist die Frage nach einer befriedigenden Materialbeschreibung nach wie vor ungelöst. Computertomographische Datensätze liefern eine räumliche Verteilung der (Röntgen-)Dichte und ermöglichen damit eine gute Darstellung der individuellen Geometrie. Weiter können die verschiedenen Materialbestandteile des Knochens, Spongiosa und Kortikalis, voneinander getrennt werden. Aber die richtungsabängige Information der Materialanisotropie ist verloren. In dieser Arbeit wird ein Ansatz für eine anisotrope Materialbeschreibung vorgestellt, die es ermöglicht, den Einfluss der individuellen knöchernen Struktur auf das makroskopische Materialverhalten abzuschätzen.
Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. Three-dimensional reconstruction of microtubules, however, is only the first step towards biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms.