Refine
Year of publication
Document Type
- Article (94)
- In Proceedings (84)
- ZIB-Report (29)
- Book chapter (8)
- Poster (6)
- Other (5)
- Research data (4)
- Doctoral Thesis (2)
- In Collection (2)
- Master's Thesis (1)
Is part of the Bibliography
- no (235)
Keywords
- statistical shape and intensity models (5)
- Statistical shape analysis (3)
- 3d-reconstruction from 2d X-rays (2)
- 3d-reconstruction from 2d Xrays (2)
- Articulated Models, Statistical Shape And Intensity Models, 2D/3D Anatomy Reconstruction, Pelvic Parameters Measurement, Total Hip Arthroplasty (2)
- Classification (2)
- Kniegelenk (2)
- Lie groups (2)
- Manifold valued statistics (2)
- Medizinische Planung (2)
Institute
- Visual and Data-centric Computing (220)
- Visual Data Analysis (210)
- Therapy Planning (181)
- Numerical Mathematics (19)
- Computational Medicine (15)
- Visual Data Analysis in Science and Engineering (11)
- Geometric Data Analysis and Processing (6)
- Mathematics for Life and Materials Science (4)
- ZIB Allgemein (3)
- Computational Systems Biology (1)
Changes in knee shape and geometry resulting from total knee arthroplasty can affect patients in numerous important ways: pain, function, stability, range of motion, and kinematics. Quantitative data concerning these changes have not been previously available, to our knowledge, yet are essential to understand individual experiences of total knee arthroplasty and thereby improve outcomes for all patients. The limiting factor has been the challenge of accurately measuring these changes. Our study objective was to develop a conceptual framework and analysis method to investigate changes in knee shape and geometry, and prospectively apply it to a sample total knee arthroplasty population. Using clinically available computed tomography and radiography imaging systems, the three-dimensional knee shape and geometry of nine patients (eight varus and one valgus) were compared before and after total knee arthroplasty. All patients had largely good outcomes after their total knee arthroplasty. Knee shape changed both visually and numerically. On average, the distal condyles were slightly higher medially and lower laterally (range: +4.5 mm to −4.4 mm), the posterior condyles extended farther out medially but not laterally (range: +1.8 to −6.4 mm), patellofemoral distance increased throughout flexion by 1.8–3.5 mm, and patellar thickness alone increased by 2.9 mm (range: 0.7–5.2 mm). External femoral rotation differed preop and postop. Joint line distance, taking cartilage into account, changed by +0.7 to −1.5 mm on average throughout flexion. Important differences in shape and geometry were seen between pre-total knee arthroplasty and post-total knee arthroplasty knees. While this is qualitatively known, this is the first study to report it quantitatively, an important precursor to identifying the reasons for the poor outcome of some patients. Using the developed protocol and visualization techniques to compare patients with good versus poor clinical outcomes could lead to changes in implant design, implant selection, component positioning, and surgical technique. Recommendations based on this sample population are provided. Intraoperative and postoperative feedback could ultimately improve patient satisfaction.
Computed tomography analysis of knee pose and geometry before and after total knee arthroplasty
(2012)
Im Rahmen der biomechanischen Simulation knöcherner Organe ist die Frage nach einer befriedigenden Materialbeschreibung nach wie vor ungelöst. Computertomographische Datensätze liefern eine räumliche Verteilung der (Röntgen-)Dichte und ermöglichen damit eine gute Darstellung der individuellen Geometrie. Weiter können die verschiedenen Materialbestandteile des Knochens, Spongiosa und Kortikalis, voneinander getrennt werden. Aber die richtungsabängige Information der Materialanisotropie ist verloren. In dieser Arbeit wird ein Ansatz für eine anisotrope Materialbeschreibung vorgestellt, die es ermöglicht, den Einfluss der individuellen knöchernen Struktur auf das makroskopische Materialverhalten abzuschätzen.
The increasing demand for distributed solutions in computing technology does not stop when it comes to visualization techniques. However, the capabilities of todays applications to perform remote rendering are limited by historical design legacys. Especially the popular X11 protokoll, which has been proven to be extremely flexible and usefull for remote 2D graphics applications, breaks down for the case of remote 3D rendering. In this white paper, we give a short overview of generic remote rendering technologies available today, and compare their performance to the recently released vizserver by SGI: a network extension to the SGI OpenGL rendering engines.