Refine
Year of publication
Document Type
- ZIB-Report (25)
- In Proceedings (12)
- Article (4)
- Book chapter (1)
- Doctoral Thesis (1)
Is part of the Bibliography
- no (43)
Keywords
Institute
- ZIB Allgemein (21)
- Mathematical Optimization (19)
We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse wavelength conversion for efficient use of the capacities. In this paper, we investigate this extensive optical network design task. Using a flexible device-based model, we present an integer programming formulation that supports greenfield planning as well as expansion planning on top of an existing network. As solution method, we propose a suitable decomposition approach that separates the wavelength assignment from the dimensioning and routing. Our method in particular provides a lower bound on the total cost which allows to rate the solution quality. Computational experiments on realistic networks approve the solution approach to be appropriate.
A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations.
We present an integer linear programming model for the design of multi-layer telecommunication networks. The formulation integrates hardware, capacity, routing, and grooming decisions in \emph{any} n umber of network layers. Practical hardware restrictions and cost can accurately be taken into account for technologies based on connection-oriented routing protocols.
In this article, strategical infrastructure planning problems in the design of large-scale telecommunication networks are discussed based on experiences from three projects with industrial partners: The access network planning of the German Gigabit-Wissenschaftsnetz (G-WiN) for DFN (Verein zur Förderung eines Deutschen Forschungsnetzes e.V.), the mobile network switching center location planning project for E-Plus Mobilfunk, and the fixed network switching center location planning project for TELEKOM AUSTRIA. We introduce a mathematical model for a hierarchical multi-commodity capacitated facility location problem, present adaptions of this basic model to the specific requirements within the different projects and discuss the individual peculiarities and model decisions made. Eventually, we present and discuss computational results of three associated case studies, illustrating '"how we did the job`` with mathematical methods.
Der scharfe Wettbewerb innerhalb der Telekommunikationsbranche zwingt die Netzbetreiber dazu, ihre Investitionen genau zu planen und immer wieder Einsparungsmanahmen durchzuführen. Gleichzeitig ist es jedoch wichtig, die Qualität der angebotenen Dienste zu verbessern, um neue Kunden zu gewinnen und langfristig an sich zu binden. Die mathematische Optimierung bietet sich für viele solcher Aufgabenstellungen als hervorragend geeignetes Planungswerkzeug an. Ziel dieses Artikels ist es, ihre Methodik und ihre Anwendung speziell zur Kosten- und Qualitätsoptimierung in Kommunikationsnetzen vorzustellen. Anhand von vier konkreten Planungsaufgaben aus dem Bereich der Festnetzplanung wird aufgezeigt, wie sich komplexe Zusammenhänge in flexiblen mathematischen Modellen abbilden lassen und welche Verfahren zur automatisierten Bearbeitung der Probleme eingesetzt werden können. Die hier vorgestellten Methoden zeichnen sich insbesondere dadurch aus, dass sie neben hochwertigen Lösungen auch eine Qualittsgarantie liefern, mit der sich die Lsungen fundiert bewerten lassen. Die dokumentierten Ergebnisse aus verschiedenen Industrieprojekten belegen die Eignung und Güte der mathematischen Optimierung für die Praxis.
Signaling is crucial to the operation of modern telecommunication networks. A breakdown in the signaling infrastructure typically causes customer service failures, incurs revenue losses, and hampers the company image. Therefore, the signaling network has to be highest reliability and survivability. This in particular holds for the routers in such a network, called \textit{signaling transfer points\/} (STPs). The robustness of an STP can be improved by equally distributing the load over the internal processing units. Several constraints have to be taken into account. The load of the links connected to a processing unit changes over time introducing an imbalance of the load. In this paper, we show how integer linear programming can be applied to reduce the imbalance within an STP, while keeping the number of changes small. Two alternative models are presented. Computational experiments validate the integer programming approach in practice. The GSM network operator E-Plus saves substantial amounts of time and money by employing the proposed approach.
We investigate the impact of link and path restoration on the cost of telecommunication networks. The surprising result is the following: the cost of an optimal network configuration is almost independent of the restoration concept if (i) the installation of network elements (ADMs, DXCs, or routers) and interface cards, (ii) link capacities, and (iii) working and restoration routings are simultaneously optimized. We present a mixed-integer programming model which integrates all these decisions. Using a branch-and-cut algorithm (with column generation to deal with all potential routing paths), we solve structurally different real-world problem instances and show that the cost of optimal solutions is almost independent of the used restoration concept. In addition, we optimize spare capacities for given shortest working paths which are predetermined with respect to different link metrics. In comparison to simultaneous optimization of working and restoration routings, it turns out that this approach does not allow to obtain predictably good results.
We investigate the impact of hop-limited routing paths on the total cost of a telecommunication network. For different survivability settings (dedicated protection, link and path restoration), the optimal network cost without restrictions on the admissible path set is compared to the results obtained with two strategies to impose hop limits on routing paths. In a thorough computational study on optimal solutions for nine real-world based problem instances, we show that hop limits should be avoided if the technology allows it and network cost is a major planning issue. In this case, column generation should be employed to deal with all routing paths. If hop-limits are required, these should be defined for each demand individually and as large as possible.
This paper is concerned with UMTS radio network design. Our task is to reconfigure antennas and the related cells as to improve network quality. In contrast to second generation GSM networks, \emph{interference} plays a paramount role when designing third generation radio networks. A known compact formulation for assessing the interference characteristics of a radio network as coupling relations between cells based on user snapshots is generalized to statistical average load. This enables us to overcome the notorious difficulties of snapshot-based network optimization approaches. We recall a mixed-integer programming model for the network design problem that is based on user snapshots and contrast it with a new network design model based on the average coupling formulation. Exemplarily focusing on the important problem of optimizing antenna tilts, we give computational results for a fast local search algorithm and the application of a MIP solver to both models. These results demonstrate that our new average-based approaches outperform state-of-the-art snapshot models for UMTS radio network optimization.
We suggest a new model for the design of telecommunication networks which integrates decisions about the topology, configuration of the switching hardware, link dimensioning, and protected routing of communication demands. Applying the branch-and-cut-algorithm implemented in our network planning and optimization tool DISCNET, we demonstrate that real-world based network planning instances of such an enhanced model can be solved.