### Refine

#### Year of publication

#### Document Type

- ZIB-Report (9)
- Article (7)
- Other (2)
- Book (1)
- Doctoral Thesis (1)

#### Keywords

- facets (2)
- integer programming (2)
- Cardinality Constraints (1)
- Cardinality Forcing Inequalities (1)
- Cardinality constraints (1)
- Combinatorial Optimization (1)
- Kardinalitätsbeschränkung (1)
- Matroid Polytope (1)
- Matroid-Polytop (1)
- Matroids (1)

#### Institute

\noindent We give a partial description of the $(s,t)-p$-path polytope of a directed graph $D$ which is the convex hull of the incidence vectors of simple directed $(s,t)$-paths in $D$ of length $p$. First, we point out how the $(s,t)-p$-path polytope is located in the family of path and cycle polyhedra. Next, we give some classes of valid inequalities which are very similar to inequalities which are valid for the $p$-cycle polytope, that is, the convex hull of the incidence vectors of simple cycles of length $p$ in $D$. We give necessary and sufficient conditions for these inequalities to be facet defining. Furthermore, we consider a class of inequalities that has been identifie d to be valid for $(s,t)$-paths of cardinality at most $p$. Finally, we transfer the results to related polytopes, in particular, the undirected counterpart of the $(s,t)-p$-path polytope.

The steel mill slab design problem from the CSPLib is a binpacking problem that is motivated by an application of the steel industry and that has been widely studied in the constraint programming community. Recently, several people proposed new models and methods to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called multiple knapsack problem with color constraints, originated from the same industrial problem, were discussed in the integer programming community. In particular, a simple integer programming for this problem has been given by Forrest et al. [3]. The aim of this paper is to bring these different studies together. Moreover, we adopt the model of [3] for the steel mill slab problem. Using a state of the art integer program solver, this model is capable to solve all instances of the steel mill slab library, mostly in less than one second, to optimality. We improved, thereby, the solution value of 76 instances.

The steel mill slab design problem from the CSPLIB is a combinatorial
optimization problem motivated by an application of the steel industry. It
has been widely studied in the constraint programming community. Several
methods were proposed to solve this problem. A steel mill slab library was
created which contains 380 instances. A closely related binpacking problem
called the multiple knapsack problem with color constraints, originated
from the same industrial problem, was discussed in the integer programming
community. In particular, a simple integer program for this problem has
been given by Forrest et al. The aim of this paper is to bring these
different studies together. Moreover, we adapt the model of Forrest et
al. for the steel mill slab design problem. Using this model and a
state-of-the-art integer program solver all instances of the steel mill
slab library can be solved efficiently to optimality. We improved,
thereby, the solution values of 76 instances compared to previous results.
Finally, we consider a recently introduced variant of the steel mill slab
design problem, where within all solutions which minimize the leftover one
is interested in a solution which requires a minimum number of slabs. For
that variant we introduce two approaches and solve all instances of the
steel mill slab library with this slightly changed objective function to
optimality.

The steel mill slab design problem from the CSPLIB is a combinatorial optimization problem motivated by an application of the steel industry. It has been widely studied in the constraint programming community. Several methods were proposed to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called the multiple knapsack problem with color constraints, originated from the same industrial problem, was discussed in the integer programming community. In particular, a simple integer program for this problem has been given by Forrest et al. (INFORMS J Comput 18:129–134, 2006). The aim of this paper is to bring these different studies together. Moreover, we adapt the model of Forrest et al. (INFORMS J Comput 18:129–134, 2006) for the steel mill slab design problem. Using this model and a state-of-the-art integer program solver all instances of the steel mill slab library can be solved efficiently to optimality. We improved, thereby, the solution values of 76 instances compared to previous results (Schaus et al., Constraints 16:125–147, 2010). Finally, we consider a recently introduced variant of the steel mill slab design problem, where within all solutions which minimize the leftover one is interested in a solution which requires a minimum number of slabs. For that variant we introduce two approaches and solve all instances of the steel mill slab library with this slightly changed objective function to optimality.

In this paper, we study the hop constrained chain polytope, that is, the convex hull of the incidence vectors of (s,t)-chains using at most k arcs of a given digraph, and its dominant. We use extended formulations (implied by the inherent structure of the Moore-Bellman-Ford algorithm) to derive facet defining inequalities for these polyhedra via projection. Our findings result into characterizations of all facet defining {0,+1,-1}-inequalities for the hop constrained chain polytope and all facet defining {0,1}-inequalities
for its dominant. Although the derived inequalities are already known, such classifications were not previously given to the best of our knowledge. Moreover, we use this approach to generalize so called jump inequalities, which have been introduced in a paper of Dahl and Gouveia in 2004.

We consider polytopes associated with cardinality constrained path and cycle problems defined on a directed or undirected graph. We present integer characterizations of these polytopes by facet defining linear inequalities for which the separation problem can be solved in polynomial time. Moreover, we give further facet defining inequalities, in particular those that are specific to odd/even paths and cycles.