Refine
Document Type
- Article (1)
- In Proceedings (1)
- Master's Thesis (1)
Language
- English (3)
Has Fulltext
- no (3)
Is part of the Bibliography
- no (3)
Keywords
- cloth simulation (1)
- mixed finite elements (1)
- shell elements (1)
Institute
This master thesis investigates the use and behaviour of a mixed finite element formulation for the simulation of garments.
The garment is modelled as an isotropic shell and is related to its mid-surface by energetic degeneration. Based on this, an energy functional is constructed, which contains the deformation and the mid-surface vector as degree of freedom. It is then shown why this problem does not correspond to a saddle point problem, but to a non-convex energy minimization.
The implementation of the energy minimization takes place with the ZIB-internal FE framework Kaskade7.4, whereby a geometric linear and different geometric non-linear problems are examined, whereby for a selected, non-linear example a comparison is made with an existing implementation on basis of Morley elements.
The further evaluations include the analysis of the quantitative and qualitative results, the used solution method, the behaviour of the system energy as well as the used CPU time.
Generating simulated training data needed for constructing sufficiently accurate surrogate models to be used for efficient optimization or parameter identification can incur a huge computational effort in the offline phase. We consider a fully adaptive greedy approach to the computational design of experiments problem using gradient-enhanced Gaussian process regression as surrogates. Designs are incrementally defined by solving an optimization problem for accuracy given a certain computational budget. We address not only the choice of evaluation points but also of required simulation accuracy, both of values and gradients of the forward model.
Numerical results show a significant reduction of the computational effort compared to just position-adaptive and static designs as well as a clear benefit of including gradient information into the surrogate training.
Adaptive Gaussian Process Regression for Efficient Building of Surrogate Models in Inverse Problems
(2023)
In a task where many similar inverse problems must be solved, evaluating costly simulations is impractical. Therefore, replacing the model y with a surrogate model y(s) that can be evaluated quickly leads to a significant speedup. The approximation quality of the surrogate model depends strongly on the number, position, and accuracy of the sample points. With an additional finite computational budget, this leads to a problem of (computer) experimental design. In contrast to the selection of sample points, the trade-off between accuracy and effort has hardly been studied systematically. We therefore propose an adaptive algorithm to find an optimal design in terms of
position and accuracy. Pursuing a sequential design by incrementally appending the computational budget leads to a convex and constrained optimization problem. As a surrogate, we construct a Gaussian process regression model. We measure the global approximation error in terms of its impact on the accuracy of the identified parameter and aim for a uniform absolute tolerance, assuming that y(s) is computed by finite element calculations. A priori error estimates and a coarse estimate of computational effort relate the expected improvement of the surrogate model error to computational effort, resulting in the most efficient combination of sample point and evaluation tolerance. We also allow for improving the accuracy of already existing sample points by continuing previously truncated finite element solution procedures.